Calculate the local Moran's I statistic for model residuals.
ww_local_moran_i()
returns the statistic itself, while
ww_local_moran_pvalue()
returns the associated p value.
These functions are meant to help assess model predictions, for instance by
identifying clusters of higher residuals than expected. For statistical
testing and inference applications, use spdep::localmoran_perm()
instead.
Usage
ww_local_moran_i(data, ...)
ww_local_moran_i_vec(truth, estimate, wt, na_rm = FALSE, ...)
ww_local_moran_pvalue(data, ...)
ww_local_moran_pvalue_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Additional arguments passed to
spdep::localmoran()
.- truth
The column identifier for the true results (that is
numeric
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, anumeric
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- wt
A
listw
object, for instance as created withww_build_weights()
. For data.frame input, may also be a function that takesdata
and returns alistw
object.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.
Value
A tibble with columns .metric, .estimator, and .estimate and nrow(data)
rows of values.
For _vec()
functions, a numeric vector of length(truth)
(or NA).
Details
These functions can be used for geographic or projected coordinate reference systems and expect 2D data.
References
Anselin, L. 1995. Local indicators of spatial association, Geographical Analysis, 27, pp 93–115. doi: 10.1111/j.1538-4632.1995.tb00338.x.
Sokal, R. R, Oden, N. L. and Thomson, B. A. 1998. Local Spatial Autocorrelation in a Biological Model. Geographical Analysis, 30, pp 331–354. doi: 10.1111/j.1538-4632.1998.tb00406.x
See also
Other autocorrelation metrics:
ww_global_geary_c()
,
ww_global_moran_i()
,
ww_local_geary_c()
,
ww_local_getis_ord_g()
Other yardstick metrics:
ww_agreement_coefficient()
,
ww_global_geary_c()
,
ww_global_moran_i()
,
ww_local_geary_c()
,
ww_local_getis_ord_g()
,
ww_willmott_d()
Examples
guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)
ww_local_moran_i(guerry_model, Crm_prs, predictions)
#> # A tibble: 85 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 local_moran_i standard 0.530
#> 2 local_moran_i standard 0.858
#> 3 local_moran_i standard 0.759
#> 4 local_moran_i standard 0.732
#> 5 local_moran_i standard 0.207
#> 6 local_moran_i standard 0.860
#> 7 local_moran_i standard 0.692
#> 8 local_moran_i standard 1.69
#> 9 local_moran_i standard -0.0109
#> 10 local_moran_i standard 0.710
#> # ℹ 75 more rows
ww_local_moran_pvalue(guerry_model, Crm_prs, predictions)
#> # A tibble: 85 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 local_moran_pvalue standard 0.361
#> 2 local_moran_pvalue standard 0.0127
#> 3 local_moran_pvalue standard 0.0318
#> 4 local_moran_pvalue standard 0.115
#> 5 local_moran_pvalue standard 0.234
#> 6 local_moran_pvalue standard 0.0935
#> 7 local_moran_pvalue standard 0.531
#> 8 local_moran_pvalue standard 0.109
#> 9 local_moran_pvalue standard 0.335
#> 10 local_moran_pvalue standard 0.00663
#> # ℹ 75 more rows
wt <- ww_build_weights(guerry_model)
ww_local_moran_i_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)
#> [1] 0.529586027 0.857962397 0.759397482 0.731821184 0.207216255
#> [6] 0.859824645 0.692480894 1.685682868 -0.010937577 0.709971045
#> [11] 1.756476080 0.839390997 -0.208812822 0.311287253 -0.195850256
#> [16] -0.046485425 0.219659575 0.072248473 0.911260991 0.796818074
#> [21] 0.472218810 -0.047995949 -0.701165391 0.682001844 -0.114131742
#> [26] 0.043283334 1.067791069 1.186850176 0.174554949 0.071132504
#> [31] 0.014932487 1.014614517 0.258635858 0.385988835 -0.113213840
#> [36] 0.016531123 0.601974328 -0.029051514 0.101963855 -0.098393898
#> [41] 0.305211136 -0.057462330 -0.015702560 0.882089292 -0.163892577
#> [46] 1.649695545 0.377330987 0.868476489 -0.465975751 0.303084203
#> [51] 1.404344537 -0.370062874 0.440556284 0.289554503 0.035787495
#> [56] 0.393521099 1.006384006 0.222959827 0.730981130 0.628215009
#> [61] -0.183012992 0.227295946 0.284153229 2.316505472 0.494418600
#> [66] 0.982994320 -0.124397352 0.160297076 1.039537767 1.231583113
#> [71] 0.271055716 -0.168894660 -0.038283576 0.017831736 -0.052920056
#> [76] 1.205308932 0.808428811 0.551329387 0.878044848 0.901458850
#> [81] 0.022009901 -0.327876773 -0.318368758 -0.003280457 -0.124796245
ww_local_moran_pvalue_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)
#> [1] 0.361304795 0.012664975 0.031799252 0.115230513 0.234090293 0.093535973
#> [7] 0.530618631 0.109289803 0.335060524 0.006632515 0.002278842 0.100115333
#> [13] 0.247742772 0.003712388 0.526236804 0.541825841 0.021511546 0.773348351
#> [19] 0.125986145 0.219825946 0.549732292 0.513555378 0.381564858 0.078983302
#> [25] 0.695793884 0.602944660 0.244326204 0.001337467 0.021685082 0.326512972
#> [31] 0.946696741 0.032650704 0.021272223 0.525113591 0.045656211 0.807490784
#> [37] 0.121000471 0.863193762 0.128354731 0.818093330 0.195316218 0.278814034
#> [43] 0.896063138 0.223229844 0.314659364 0.021844009 0.371216056 0.230792356
#> [49] 0.042199799 0.382128483 0.003916122 0.446093710 0.127376322 0.171424332
#> [55] 0.947231579 0.141533773 0.058387258 0.599378815 0.103085890 0.044587278
#> [61] 0.251120319 0.359430944 0.619407669 0.063573829 0.314640714 0.389339642
#> [67] 0.102639026 0.293931872 0.011789349 0.086786681 0.617302569 0.175776744
#> [73] 0.738859695 0.940225426 0.575078121 0.123277217 0.055146249 0.054102586
#> [79] 0.104150628 0.009218471 0.672565343 0.245960451 0.143659118 0.951709014
#> [85] 0.277252686