Calculate the global Moran's I statistic for model residuals.
ww_global_moran_i()
returns the statistic itself, while
ww_global_moran_pvalue()
returns the associated p value.
These functions are meant to help assess model predictions, for instance by
identifying if there are clusters of higher residuals than expected. For
statistical testing and inference applications, use
spdep::moran.test()
instead.
Usage
ww_global_moran_i(data, ...)
ww_global_moran_i_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)
ww_global_moran_pvalue(data, ...)
ww_global_moran_pvalue_vec(truth, estimate, wt = NULL, na_rm = FALSE, ...)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Additional arguments passed to
spdep::moran()
(forww_global_moran_i()
) orspdep::moran.test()
(forww_global_moran_pvalue()
).- truth
The column identifier for the true results (that is
numeric
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, anumeric
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- wt
A
listw
object, for instance as created withww_build_weights()
. For data.frame input, may also be a function that takesdata
and returns alistw
object.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.
Value
A tibble with columns .metric, .estimator, and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the
number of groups.
For _vec()
functions, a single value (or NA).
Details
These functions can be used for geographic or projected coordinate reference systems and expect 2D data.
References
Moran, P.A.P. (1950). "Notes on Continuous Stochastic Phenomena." Biometrika, 37(1/2), pp 17. doi: 10.2307/2332142
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 17.
See also
Other autocorrelation metrics:
ww_global_geary_c()
,
ww_local_geary_c()
,
ww_local_getis_ord_g()
,
ww_local_moran_i()
Other yardstick metrics:
ww_agreement_coefficient()
,
ww_global_geary_c()
,
ww_local_geary_c()
,
ww_local_getis_ord_g()
,
ww_local_moran_i()
,
ww_willmott_d()
Examples
guerry_model <- guerry
guerry_lm <- lm(Crm_prs ~ Litercy, guerry_model)
guerry_model$predictions <- predict(guerry_lm, guerry_model)
ww_global_moran_i(guerry_model, Crm_prs, predictions)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 global_moran_i standard 0.412
ww_global_moran_pvalue(guerry_model, Crm_prs, predictions)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 global_moran_pvalue standard 7.23e-10
wt <- ww_build_weights(guerry_model)
ww_global_moran_i_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)
#> [1] 0.4115652
ww_global_moran_pvalue_vec(
guerry_model$Crm_prs,
guerry_model$predictions,
wt = wt
)
#> [1] 7.234758e-10