This function obtains information of a single eLTER site, as a stored in DEIMS-SDR catalogue, through the DEIMS-SDR API.
Arguments
- deimsid
A character. The DEIMS ID of the site from DEIMS-SDR website. DEIMS ID information here.
- category
A
category
. This parameter selects which category or categories are retrieved and returned in the result. Possible value are: 'Affiliations', 'Boundaries', 'Contacts', 'EnvCharacts', 'General', 'Infrastructure', 'observedProperties', 'RelateRes'. Multiple values can be indicated.
Value
The output of the function is a tibble
with main features of the
site and the selected information, such as: networks and projects in
which the site is involved.
If category 'Boundaries' is indicated an sf
object is returned
References
Wickham H, François R, Henry L, Müller K (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.9, https://CRAN.R-project.org/package=dplyr.
R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Pebesma E (2018). “Simple Features for R: Standardized Support for Spatial Vector Data.” The R Journal, 10(1), 439--446. doi:10.32614/RJ-2018-009 .
Cheng J, Karambelkar B, Xie Y (2022). leaflet: Create Interactive Web Maps with the JavaScript 'Leaflet' Library. R package version 2.1.1, https://CRAN.R-project.org/package=leaflet.
Author
Alessandro Oggioni, phD (2020) oggioni.a@irea.cnr.it
Examples
site <- get_site_info(
deimsid = "https://deims.org/f30007c4-8a6e-4f11-ab87-569db54638fe",
category = "Boundaries"
)
site
#> Simple feature collection with 1 feature and 8 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: 8.47803 ymin: 45.72556 xmax: 8.860755 ymax: 46.18081
#> Geodetic CRS: WGS 84
#> # A tibble: 1 × 9
#> title uri boundaries geoCo…¹ country geoEl…² geoEl…³ geoEl…⁴
#> <chr> <chr> <MULTIPOLYGON [°]> <chr> <list> <dbl> <int> <int>
#> 1 Lago … http… (((8.615976 45.72628, 8.… POINT … <chr> 194. 186 4633
#> # … with 1 more variable: geoElev.unit <chr>, and abbreviated variable names
#> # ¹geoCoord, ²geoElev.avg, ³geoElev.min, ⁴geoElev.max
siteInfo <- get_site_info(
deimsid = "https://deims.org/f30007c4-8a6e-4f11-ab87-569db54638fe",
category = c("EnvCharacts", "Affiliations")
)
siteInfo
#> # A tibble: 1 × 28
#> title uri geoCo…¹ country geoEl…² geoEl…³ geoEl…⁴ geoEl…⁵ affil…⁶ affil…⁷
#> <chr> <chr> <chr> <list> <dbl> <int> <int> <chr> <list> <list>
#> 1 Lago Ma… http… POINT … <chr> 194. 186 4633 msl <df> <df>
#> # … with 18 more variables:
#> # envCharacteristics.airTemperature.yearlyAverage <dbl>,
#> # envCharacteristics.airTemperature.monthlyAverage <lgl>,
#> # envCharacteristics.airTemperature.unit <chr>,
#> # envCharacteristics.airTemperature.referencePeriod <lgl>,
#> # envCharacteristics.precipitation.yearlyAverage <int>,
#> # envCharacteristics.precipitation.monthlyAverage <lgl>, …