Enrich and certify a list of species names by comparing with Worms.
Source:R/taxon_id_worms.R
taxon_id_worms.Rd
This function tibble object with all the columns of input table of taxa plus new columns such as valid_name, valid_authority, valid_AphiaID, status, synonyms, LSID, url, matchType, nOfWormsRecords, wormsRecords obtained from: Worms rest API.
Arguments
- input
A
tibble
. The table that contain the species names list to be checked.- taxaColumn
A
numeric
. The cardinal number of the column where species list is. Default is1
.- verbose
A
logical
. Whit this selection, the function returns a message with number of record(s) that don't match with any Worms names and the number of record(s) that match with more that one Worms name. Default isTRUE
.- refine
A
logical
. With this selection, the function allows to refine the result(s) that match with more Worms records. By a interactive use of the terminal, the user can chose the result. Default isFALSE
.
Value
The output of the function is a tibble
with the columns provided
and new columns such as: valid_name, valid_authority, valid_AphiaID, status,
synonyms, LSID, url, matchType, nOfWormsRecords, wormsRecords obtained by
Worms rest API.
The function also return, if verbose is TRUE, the list of records that don't
match with Worms name species.
References
Chamberlain S (2020). worrms: World Register of Marine Species (WoRMS) Client. R package version 0.4.2, https://CRAN.R-project.org/package=worrms.
Wickham H, François R, Henry L, Müller K (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.9, https://CRAN.R-project.org/package=dplyr.
Author
Alessandro Oggioni, phD (2021) oggioni.a@irea.cnr.it
Paolo Tagliolato, phD (2021) tagliolato.p@irea.cnr.it
Examples
phytoplankton <- tibble::tibble(
ID = c(1, 2, 3, 4, 5, 6, 7),
species = c(
"Asterionella formosa", "Chrysococcus sp.",
"Cryptomonas rostrata", "Dinobryon divergens",
"Mallomonas akrokomos", "Melosira varians",
"Cryptomonas rostrata"
)
)
table <- taxon_id_worms(
input = phytoplankton,
taxaColumn = 2,
verbose = TRUE,
refine = TRUE
)
#>
#> After the finding operation the number of record(s) that don't match
#> with any Worms names are:
#> *--- 0 on 7 examined ---*
#> please verify the species name provided and run again this
#> function. The record(s) that match with more that one Worms name are:
#> *--- 7 on 7 examined ---*
#> please use the function taxon_id_worms_refine for specify wich
#> is the exact corrispondence with your given species name.
#> This is the taxa name provided by you:
#> Cryptomonas rostrata
#> Worms don't contain a unique records that match with this name.
#> The Worms records most similar are:
#>
#> 1: Cryptomonas rostrata (Skuja, 1948)
#> Worms status: accepted
#> Unaccept reason: NA
#> Match type: exact
#> Modified: 2015-06-26T12:14:04.327Z
#> 2: Cryptomonas rostrata (O.V.Troitzkaja, 1922)
#> Worms status: unaccepted
#> Unaccept reason: synonym
#> Match type: exact
#> Modified: 2021-08-27T06:27:33.180Z
#>
#> ----
#> Please select the record that you think
#> most similar to the taxa name that you have provided.
#> Insert the number of record:
#> This is the taxa name provided by you:
#> Cryptomonas rostrata
#> Worms don't contain a unique records that match with this name.
#> The Worms records most similar are:
#>
#> 1: Cryptomonas rostrata (Skuja, 1948)
#> Worms status: accepted
#> Unaccept reason: NA
#> Match type: exact
#> Modified: 2015-06-26T12:14:04.327Z
#> 2: Cryptomonas rostrata (O.V.Troitzkaja, 1922)
#> Worms status: unaccepted
#> Unaccept reason: synonym
#> Match type: exact
#> Modified: 2021-08-27T06:27:33.180Z
#>
#> ----
#> Please select the record that you think
#> most similar to the taxa name that you have provided.
#> Insert the number of record:
table
#> # A tibble: 7 × 12
#> ID species valid…¹ valid…² valid…³ status synon…⁴ LSID url match…⁵
#> <dbl> <chr> <chr> <chr> <int> <chr> <chr> <chr> <chr> <chr>
#> 1 1 Asterionella… Asteri… Hassal… 148954 accep… NA urn:… http… exact
#> 2 2 Chrysococcus… NA NA NA NA NA NA NA NA
#> 3 3 Cryptomonas … NA NA NA NA NA NA NA NA
#> 4 4 Dinobryon di… Dinobr… O.E.Im… 157248 accep… NA urn:… http… exact
#> 5 5 Mallomonas a… Mallom… Ruttne… 249722 accep… NA urn:… http… exact
#> 6 6 Melosira var… Melosi… C.Agar… 149043 accep… NA urn:… http… exact
#> 7 7 Cryptomonas … NA NA NA NA NA NA NA NA
#> # … with 2 more variables: nOfWormsResults <dbl>, wormsRecords <list>, and
#> # abbreviated variable names ¹valid_name, ²valid_authority, ³valid_AphiaID,
#> # ⁴synonyms, ⁵matchType