Skip to contents

birdsize for the Breeding Bird Survey

birdsize is written to interface naturally with data from the North American Breeding Bird Survey (Pardieck et al. 2019). Beginning with data from a BBS route, birdsize can directly simulate body size and basal metabolic rate measurements and calculate year- or species-wide summary statistics.

Obtaining data

Data releases for the Breeding Bird Survey are available on ScienceBase, e.g. here.

The Data Retriever also provides an interface for downloading recent releases. Instructions for installing the Data Retriever for R are available here.

birdsize includes a demo dataset with the same column names as the Breeding Bird Survey data available through ScienceBase or the Retriever, but with synthetic data. For an explanation of each of the column names, see the Help page for demo_route_raw or the metadata available on ScienceBase.

demo_raw_data <- birdsize::demo_route_raw

head(demo_raw_data)
#>   record_id   routedataid countrynum statenum route rpid year  AOU count10
#> 1    900000 9009911011994        900       99     1  101 1994 4730       8
#> 2    900001 9009911011995        900       99     1  101 1995 4730      13
#> 3    900002 9009911011996        900       99     1  101 1996 4730       8
#> 4    900003 9009911011997        900       99     1  101 1997 4730       9
#> 5    900004 9009911011998        900       99     1  101 1998 4730      10
#> 6    900005 9009911011999        900       99     1  101 1999 4730      12
#>   count20 count30 count40 count50 stoptotal speciestotal
#> 1      12      15      12      15         5           62
#> 2       9      11      10      10         5           53
#> 3      11       9      13      15         5           56
#> 4      13      16       9      12         5           59
#> 5       6      12       8       7         5           43
#> 6      13       5       9       5         5           44

Cleaning data

Following Harris et al. (2018), it is recommended to filter the raw BBS data to remove taxa that are poorly sampled via the BBS methods (e.g. nightbirds, waterbirds) and to remove unidenitifed taxa. The filter_bbs_survey function performs this cleaning:

demo_clean_data <- birdsize::filter_bbs_survey(demo_raw_data)

head(demo_clean_data)
#>   record_id   routedataid countrynum statenum route rpid year  AOU count10
#> 1    900000 9009911011994        900       99     1  101 1994 4730       8
#> 2    900001 9009911011995        900       99     1  101 1995 4730      13
#> 3    900002 9009911011996        900       99     1  101 1996 4730       8
#> 4    900003 9009911011997        900       99     1  101 1997 4730       9
#> 5    900004 9009911011998        900       99     1  101 1998 4730      10
#> 6    900005 9009911011999        900       99     1  101 1999 4730      12
#>   count20 count30 count40 count50 stoptotal speciestotal
#> 1      12      15      12      15         5           62
#> 2       9      11      10      10         5           53
#> 3      11       9      13      15         5           56
#> 4      13      16       9      12         5           59
#> 5       6      12       8       7         5           43
#> 6      13       5       9       5         5           44

Simulating individual-level measurements

The community_generate function will generate individual-level size and BMR estimates for all individuals recorded in a community data frame of the type available from ScienceBase, the Retriever, or the included demo data:

set.seed(2022)

demo_community <- birdsize::community_generate(demo_clean_data)

head(demo_community)
#>   record_id   routedataid countrynum statenum route rpid year count10 count20
#> 1    900000 9009911011994        900       99     1  101 1994       8      12
#> 2    900000 9009911011994        900       99     1  101 1994       8      12
#> 3    900000 9009911011994        900       99     1  101 1994       8      12
#> 4    900000 9009911011994        900       99     1  101 1994       8      12
#> 5    900000 9009911011994        900       99     1  101 1994       8      12
#> 6    900000 9009911011994        900       99     1  101 1994       8      12
#>   count30 count40 count50 stoptotal speciestotal  AOU sim_species_id
#> 1      15      12      15         5           62 4730           4730
#> 2      15      12      15         5           62 4730           4730
#> 3      15      12      15         5           62 4730           4730
#> 4      15      12      15         5           62 4730           4730
#> 5      15      12      15         5           62 4730           4730
#> 6      15      12      15         5           62 4730           4730
#>   individual_mass individual_bmr mean_size  sd_size abundance  sd_method
#> 1        40.44602       146.8560    37.475 3.300613        62 AOU lookup
#> 2        33.60224       128.6737    37.475 3.300613        62 AOU lookup
#> 3        34.51275       131.1501    37.475 3.300613        62 AOU lookup
#> 4        32.70726       126.2207    37.475 3.300613        62 AOU lookup
#> 5        36.38245       136.1775    37.475 3.300613        62 AOU lookup
#> 6        27.90115       112.6984    37.475 3.300613        62 AOU lookup
#>   scientific_name
#> 1 Alauda arvensis
#> 2 Alauda arvensis
#> 3 Alauda arvensis
#> 4 Alauda arvensis
#> 5 Alauda arvensis
#> 6 Alauda arvensis

The first 15 columns (record_id through AOU) are retained from the input data. For species in the BBS, sim_species_id is identical to the AOU used for species identification. scientific_name gives the scientific name associated with the AOU. individual_mass and individual_bmr are individual-level mass and BMR estimates, with one for each individual recorded in the input data. mean_size, sd_size, abundance, and sd_method give the parameters used to generate the individual-level estimates.

References

Harris DJ, Taylor SD, White EP. 2018. Forecasting biodiversity in breeding birds using best practices. PeerJ 6:e4278 https://doi.org/10.7717/peerj.4278

Pardieck, K.L., Ziolkowski Jr., D.J., Lutmerding, M., Aponte, V., and Hudson, M-A.R., 2019, North American Breeding Bird Survey Dataset 1966 - 2018 (ver. 2018.0): U.S. Geological Survey, Patuxent Wildlife Research Center, https://doi.org/10.5066/P9HE8XYJ.