Converts the output from a dynamite()
call to a
draws_df
format of the posterior package, enabling the use
of diagnostics and plotting methods of posterior and bayesplot
packages. Note that this function returns variables in a wide format,
whereas as.data.frame.dynamitefit()
uses the long format.
Usage
# S3 method for class 'dynamitefit'
as_draws_df(
x,
parameters = NULL,
responses = NULL,
types = NULL,
times = NULL,
groups = NULL,
...
)
# S3 method for class 'dynamitefit'
as_draws(x, parameters = NULL, responses = NULL, types = NULL, ...)
Arguments
- x
[
dynamitefit
]
The model fit object.- parameters
[
character()
]
Parameter(s) for which the samples should be extracted. Possible options can be found with functionget_parameter_names()
. Default is all parameters of specific type for all responses. This argument is mutually exclusive withtypes
.- responses
[
character()
]
Response(s) for which the samples should be extracted. Possible options are elements ofunique(x$priors$response)
, and the default is this entire vector. Ignored if the argumentparameters
is supplied.omega_alpha
, andomega_psi
. See alsoget_parameter_types()
.- types
[
character()
]
Type(s) of the parameters for which the samples should be extracted. See details of possible values. Default is all values listed in details except spline coefficientsomega
. This argument is mutually exclusive withparameters
.- times
[
double()
]
Time point(s) to keep. IfNULL
(the default), all time points are kept.- groups
[
character()
]
Group name(s) to keep. IfNULL
(the default), all groups are kept.- ...
Ignored.
Details
You can use the arguments parameters
, responses
and types
to extract
only a subset of the model parameters (i.e., only certain types of
parameters related to a certain response variable).
See potential values for the types argument in as.data.frame.dynamitefit()
and get_parameter_names()
for potential values for parameters
argument.
See also
Model outputs
as.data.frame.dynamitefit()
,
as.data.table.dynamitefit()
,
coef.dynamitefit()
,
confint.dynamitefit()
,
dynamite()
,
get_code()
,
get_data()
,
get_parameter_dims()
,
get_parameter_names()
,
get_parameter_types()
,
ndraws.dynamitefit()
,
nobs.dynamitefit()
Examples
data.table::setDTthreads(1) # For CRAN
as_draws(gaussian_example_fit, types = c("sigma", "beta"))
#> # A draws_df: 100 iterations, 2 chains, and 2 variables
#> beta_y_z sigma_y
#> 1 2.0 0.20
#> 2 2.0 0.20
#> 3 2.0 0.20
#> 4 1.9 0.19
#> 5 2.0 0.19
#> 6 2.0 0.20
#> 7 2.0 0.20
#> 8 2.0 0.20
#> 9 2.0 0.20
#> 10 2.0 0.20
#> # ... with 190 more draws
#> # ... hidden reserved variables {'.chain', '.iteration', '.draw'}
# Compute MCMC diagnostics using the posterior package
posterior::summarise_draws(as_draws(gaussian_example_fit))
#> # A tibble: 143 × 10
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 alpha_y[2] 0.0587 0.0604 0.0309 0.0286 0.00452 0.103 1.00 156. 188.
#> 2 alpha_y[3] 0.0951 0.0955 0.0411 0.0424 0.0336 0.160 1.01 206. 168.
#> 3 alpha_y[4] 0.171 0.169 0.0392 0.0317 0.103 0.233 1.01 252. 181.
#> 4 alpha_y[5] 0.264 0.263 0.0410 0.0438 0.199 0.326 0.998 229. 191.
#> 5 alpha_y[6] 0.304 0.298 0.0383 0.0370 0.250 0.372 1.00 246. 151.
#> 6 alpha_y[7] 0.336 0.334 0.0390 0.0400 0.276 0.400 1.02 153. 109.
#> 7 alpha_y[8] 0.422 0.424 0.0366 0.0349 0.365 0.481 1.00 119. 177.
#> 8 alpha_y[9] 0.458 0.456 0.0390 0.0417 0.392 0.520 1.00 157. 187.
#> 9 alpha_y[10] 0.418 0.419 0.0443 0.0435 0.350 0.492 1.01 178. 185.
#> 10 alpha_y[11] 0.407 0.409 0.0409 0.0426 0.340 0.473 1.00 247. 185.
#> # ℹ 133 more rows