Returns the input data to the Stan model. Mostly useful for debugging.
Usage
get_data(x, ...)
# S3 method for class 'dynamiteformula'
get_data(x, data, time, group = NULL, ...)
# S3 method for class 'dynamitefit'
get_data(x, ...)
Arguments
- x
[
dynamiteformula
ordynamitefit
]
The model formula or an existingdynamitefit
object. Seedynamiteformula()
anddynamite()
.- ...
Ignored.
- data
[
data.frame
,tibble::tibble
, ordata.table::data.table
]
The data that contains the variables in the model in long format. Supported column types areinteger
,logical
,double
, andfactor
. Columns of typecharacter
will be converted to factors. Unused factor levels will be dropped. Thedata
can contain missing values which will simply be ignored in the estimation in a case-wise fashion (per time-point and per channel). Inputdata
is converted to channel specific matrix representations viastats::model.matrix.lm()
.- time
[
character(1)
]
A column name ofdata
that denotes the time index of observations. If this variable is a factor, the integer representation of its levels are used internally for defining the time indexing.- group
[
character(1)
]
A column name ofdata
that denotes the unique groups orNULL
corresponding to a scenario without any groups. Ifgroup
isNULL
, a new column.group
is created with constant value1L
is created indicating that all observations belong to the same group. In case of name conflicts withdata
, see thegroup_var
element of the return object to get the column name of the new variable.
See also
Model outputs
as.data.frame.dynamitefit()
,
as.data.table.dynamitefit()
,
as_draws_df.dynamitefit()
,
coef.dynamitefit()
,
confint.dynamitefit()
,
dynamite()
,
get_code()
,
get_parameter_dims()
,
get_parameter_names()
,
get_parameter_types()
,
ndraws.dynamitefit()
,
nobs.dynamitefit()
Examples
data.table::setDTthreads(1) # For CRAN
d <- data.frame(y = rnorm(10), x = 1:10, time = 1:10, id = 1)
str(get_data(obs(y ~ x, family = "gaussian"),
data = d, time = "time", group = "id"
))
#> List of 24
#> $ K_fixed_y : int 1
#> $ K_varying_y : int 0
#> $ K_random_y : int 0
#> $ K_y : int 1
#> $ J_fixed_y : int [1(1d)] 1
#> ..- attr(*, "dimnames")=List of 1
#> .. ..$ : chr "x"
#> $ J_varying_y : int[0 (1d)]
#> $ J_y : int [1(1d)] 1
#> ..- attr(*, "dimnames")=List of 1
#> .. ..$ : chr "x"
#> $ J_random_y : int[0 (1d)]
#> $ L_fixed_y : int [1(1d)] 1
#> $ L_varying_y : int[0 (1d)]
#> $ obs_y : int [1, 1:10] 1 1 1 1 1 1 1 1 1 1
#> $ n_obs_y : int [1:10] 1 1 1 1 1 1 1 1 1 1
#> $ t_obs_y : int [1:10(1d)] 1 2 3 4 5 6 7 8 9 10
#> $ T_obs_y : int 10
#> $ y_y : num [1, 1:10] 0.6224 0.5068 -0.4262 1.6364 0.0428 ...
#> $ beta_prior_pars_y: num [1, 1:2] 0 0.66
#> $ N : int 1
#> $ K : int 1
#> $ X : num [1:10, 1, 1] 1 2 3 4 5 6 7 8 9 10
#> $ M : int 0
#> $ P : num 0
#> $ T : int 10
#> $ X_m : num [1(1d)] 1
#> $ grainsize : num 10