Tests multiple linear hypotheses simultaneously.
Arguments
- object
An object that inherits from EL.
- rhs
A numeric vector (column matrix) or a list of numeric vectors for the right-hand sides of hypotheses. Defaults to
NULL
. See ‘Details’.- lhs
A list or a numeric matrix for the left-hand sides of hypotheses. For a list
lhs
, each element must be specified as a single instance of thelhs
inelt()
. For a matrixlhs
, each row gives a linear combination of the parameters inobject
. The number of columns must be equal to the number of parameters. Defaults toNULL
. See ‘Details’.- alpha
A single numeric for the overall significance level. Defaults to
0.05
.- control
An object of class ControlEL constructed by
el_control()
. Defaults toNULL
and inherits thecontrol
slot inobject
.
Value
An object of class of ELMT.
Details
elmt()
tests multiple hypotheses simultaneously. Each hypothesis
corresponds to the constrained empirical likelihood ratio described in
CEL. rhs
and lhs
cannot be both NULL
. The right-hand
side and left-hand side of each hypothesis must be specified as described
in elt()
.
For specifying linear contrasts more conveniently, rhs
and lhs
also
take a numeric vector and a numeric matrix, respectively. Each element of
rhs
and each row of lhs
correspond to a contrast (hypothesis).
The vector of empirical likelihood ratio statistics asymptotically follows
a multivariate chi-square distribution under the complete null hypothesis.
The multiple testing procedure asymptotically controls the family-wise
error rate at the level alpha
. Based on the distribution of the maximum
of the test statistics, the adjusted p-values are estimated by Monte Carlo
simulation.
References
Kim E, MacEachern SN, Peruggia M (2023). “Empirical likelihood for the analysis of experimental designs.” Journal of Nonparametric Statistics, 35(4), 709–732. doi:10.1080/10485252.2023.2206919 .
Kim E, MacEachern SN, Peruggia M (2024). “melt: Multiple Empirical Likelihood Tests in R.” Journal of Statistical Software, 108(5), 1–33. doi:10.18637/jss.v108.i05 .
See also
EL, ELMT, elt()
, el_control()
Examples
## Bivariate mean (list `rhs` & no `lhs`)
set.seed(143)
data("women")
fit <- el_mean(women, par = c(65, 135))
rhs <- list(c(64, 133), c(66, 140))
elmt(fit, rhs = rhs)
#>
#> Empirical Likelihood Multiple Tests
#>
#> Overall significance level: 0.05
#>
#> Calibration: Multivariate chi-square
#>
#> Hypotheses:
#> Chisq Df
#> 1 2.069 2
#> 2 1.255 2
#>
## Pairwise comparison (no `rhs` & list `lhs`)
data("clothianidin")
fit2 <- el_lm(clo ~ -1 + trt, clothianidin)
lhs2 <- list(
"trtNaked - trtFungicide",
"trtFungicide - trtLow",
"trtLow - trtHigh"
)
elmt(fit2, lhs = lhs2)
#>
#> Empirical Likelihood Multiple Tests
#>
#> Overall significance level: 0.05
#>
#> Calibration: Multivariate chi-square
#>
#> Hypotheses:
#> Estimate Chisq Df
#> trtNaked - trtFungicide = 0 -1.0525 5.510 1
#> trtFungicide - trtLow = 0 -0.6269 1.062 1
#> trtLow - trtHigh = 0 -1.4932 3.774 1
#>
## Arbitrary hypotheses (list `rhs` & list `lhs`)
data("mtcars")
fit3 <- el_lm(mpg ~ wt + qsec, data = mtcars)
lhs3 <- list(c(1, 4, 0), rbind(c(0, 1, 0), c(0, 0, 1)))
rhs3 <- list(0, c(-6, 1))
elmt(fit3, rhs = rhs3, lhs = lhs3)
#>
#> Empirical Likelihood Multiple Tests
#>
#> Overall significance level: 0.05
#>
#> Calibration: Multivariate chi-square
#>
#> Hypotheses:
#> Chisq Df
#> 1 0.037 1
#> 2 2.790 2
#>