Different measuring devices and analysis software lead to opaque
results in measuring gas exchange parameters. To make exercise science
more transparent and reproducible, the spiro
package offers
a standardized workflow for data from cardiopulmonary exercise
testing.
This vignette provides information on how the spiro
package imports and processes raw data from metabolic carts.
Import and processing with spiro()
The spiro
package makes import and processing of
cardiopulmonary data easy: The spiro()
function does all
that work for you. You just need to paste the path of a file with raw
data from cardiopulmonary exercise testing to the function. This will
return a data.frame
containing all relevant data for each
second of testing, ready for summarizing
or plotting.
library(spiro)
# Get example data
file <- spiro_example("zan_gxt")
spiro(file)
#> load step time VO2 VCO2 RR VT VE HR PetO2 PetCO2 VO2_rel
#> 1 0 0 1 NA NA NA NA NA NA NA NA NA
#> 2 0 0 2 NA NA NA NA NA NA NA NA NA
#> 3 0 0 3 NA NA NA NA NA NA NA NA NA
#> 4 0 0 4 399.08 323.70 13.94 0.77 10.72 NA NA NA 6.05
#> 5 0 0 5 409.83 330.26 14.50 0.74 10.66 NA NA NA 6.21
#> 6 0 0 6 420.58 336.82 15.06 0.71 10.60 NA NA NA 6.37
#> 7 0 0 7 431.33 343.37 15.63 0.68 10.53 NA NA NA 6.54
#> 8 0 0 8 435.30 346.51 16.06 0.69 11.04 NA NA NA 6.60
#> 9 0 0 9 437.02 348.52 16.46 0.71 11.74 NA NA NA 6.62
#> 10 0 0 10 438.74 350.53 16.85 0.74 12.44 NA NA NA 6.65
#> VCO2_rel RE RER CHO FO
#> 1 NA NA NA NA NA
#> 2 NA NA NA NA NA
#> 3 NA NA NA NA NA
#> 4 4.90 NA 0.81 0.20 0.13
#> 5 5.00 NA 0.81 0.19 0.13
#> 6 5.10 NA 0.80 0.19 0.14
#> 7 5.20 NA 0.80 0.18 0.15
#> 8 5.25 NA 0.80 0.18 0.15
#> 9 5.28 NA 0.80 0.19 0.15
#> 10 5.31 NA 0.80 0.19 0.15
#> ... with 2999 more rows
spiro()
will return interpolated data for the following
parameters:
- load: velocity or power, either retrieved from the raw data file or manually supplied by setting a protocol
- step: coded variable for the number of the load step in the test protocol
- time: time (s)
- VO2: oxygen uptake (ml/min)
- VCO2: carbon dioxide output (ml/min)
- RR: respiratory rate (1/min)
- VT: tidal volume (l)
- VE: minute ventilation (l/min)
- HR: heart rate (bpm), if available
- PetO2: end-tidal partial pressure of oxygen (mmHg)
- PetCO2: end-tidal partial pressure of carbon dioxide (mmHg)
- VO2_rel: relative oxygen uptake (ml/min/kg)
- VCO2_rel: relative carbon dioxide output (ml/min/kg)
- RE: running economy (ml/kg/km), if applicable
- RER: respiratory quotient
- CHO: rate of carbohydrate oxidation (g/min)
- FO: rate of fat oxidation (g/min)
Options for data processing
You can control the exercise protocol, the calculation of parameters
related to body weight and the adding of heart rate data with the
arguments of spiro()
or with the helper functions
add_protocol()
, add_weight()
and
add_hr()
within a piping syntax:
# Note: The Base R pipe requires R version 4.1 or greater
protocol <- set_protocol(
pt_wu(duration = 120, load = 50),
pt_steps(duration = 30, load = 100, increment = 20, count = 24)
)
spiro(file = spiro_example("zan_ramp")) |>
add_bodymass(bodymass = 63.4) |>
add_protocol(protocol) |>
add_hr(hr_file = spiro_example("hr_ramp.tcx"), hr_offset = 0)
Use breath-by-breath data!
We highly recommended to import only raw breath-by-breath data for several reasons:
- Prior averaging or interpolation happens outside of R and is therefore a non-reproducible data processing step.
- If no data for single breaths is available, some functionality of the package is lost (e.g. breath-based averaging for VO_2max_ determination).
- Prior processing usually leads to data containing less data points, which hinders the automated guessing of exercise protocols based on the available load data.
If you use a metabolic cart that measures, but does not output data
on a breath-by-breath basis, read the manufacturer’s instructions on how
to export the raw data in such a way. Data from other systems (e.g.,
most mixing chamber metabolic carts) can still be processed with the
spiro
-package, but protocol guesses and summary
calculations have to be treated with caution.
Supported metabolic carts
The spiro
package supports different metabolic carts.
The metabolic cart a data file is produced by is usually determined
automatically, but can also be set manually in the spiro()
function. Currently this package supports the following devices:
-
CORTEX (
"cortex"
): .xlsx, .xls or .xml files in English or German language -
COSMED (
"cosmed"
): .xlsx or .xls files in English or German language -
VYNTUS (
"vyntus"
): .txt files (tab-separated) in French, German or Norwegian language -
ZAN (
"zan"
): .dat files, usually with the name “EXED*” in German language
To only import the raw data without further processing (such as
interpolation, exercise protocol guessing,…) use the function
spiro_raw()
:
spiro_raw(file, device = NULL, anonymize = TRUE)
#> time VO2 VCO2 RR VT VE HR load PetO2 PetCO2
#> 1 3.44 393 320 13.62 0.79 10.76 NA 0 NA NA
#> 2 7.25 434 345 15.76 0.67 10.51 NA 0 NA NA
#> 3 10.73 440 352 17.14 0.76 12.96 NA 0 NA NA
#> 4 13.97 582 451 18.63 0.65 12.13 NA 0 NA NA
#> 5 17.20 837 677 18.47 1.07 19.71 NA 0 NA NA
#> 6 20.39 902 753 18.87 1.19 22.42 NA 0 NA NA
#> 7 24.37 391 338 15.08 1.01 15.23 NA 0 NA NA
#> 8 28.00 503 428 16.52 0.69 11.45 NA 0 NA NA
#> 9 32.06 246 214 14.78 0.61 8.97 NA 0 NA NA
#> 10 34.65 728 605 23.25 0.54 12.46 NA 0 NA NA
#> ... with 1987 more rows
Alternatively you can also access the raw data after a
spiro()
call.
Exercise protocols
To achieve the full functionality of data summary and plotting with
the spiro
package, an exercise protocol needs to be
attached to the data.
Protocol guessing
By default, spiro()
guesses the exercise protocol using
get_protocol()
, looking for velocity or load data in the
imported raw data. To return the protocol guess after a
spiro()
call, access the "protocol"
attribute.
s <- spiro(file)
attr(s,"protocol")
#> duration load type code
#> 1 60 0.0 pre measures 0
#> 2 300 2.0 load 1
#> 3 30 0.0 rest -1
#> 4 300 2.4 load 2
#> 5 30 0.0 rest -1
#> 6 300 2.8 load 3
#> 7 30 0.0 rest -1
#> 8 300 3.2 load 4
#> 9 30 0.0 rest -1
#> 10 300 3.6 load 5
#> 11 30 0.0 rest -1
#> 12 300 4.0 load 6
#> 13 30 0.0 rest -1
#> 14 300 4.4 load 7
#> 15 30 0.0 rest -1
#> 16 300 4.8 load 8
#> 17 30 0.0 rest -1
#> 18 300 5.2 load 9
#> 19 10 0.0 rest -1
Protocol setting
In cases where no load data is saved in the metabolic cart’s file or
get_protocol()
turns wrong, a protocol can be manually
set.
There are two ways to initially generate a protocol: by providing all
load-duration combinations with set_protocol_manual()
or by
using the helper functions within set_protocol()
. Once a
protocol has been set, it can be used as the protocol
argument in a spiro()
call or attached to a
spiro
data frame with add_protocol()
.
# manually setting a test protocol
pt <- set_protocol_manual(
duration = c(60,300,30,300,30,300,30,300,30,300,30,300,30,300,30,300,30,300),
load = c(0,3,0,3.2,0,3.4,0,3.6,0,3.8,0,4,0,4.2,0,4.4,0,4.6)
)
# attach protocol within spiro call
s <- spiro(file, protocol = pt)
# attach protocol with `add_protocol`
t <- spiro(file)
add_protocol(t, pt)
#> load step time VO2 VCO2 RR VT VE HR PetO2 PetCO2 VO2_rel
#> 1 0 0 1 NA NA NA NA NA NA NA NA NA
#> 2 0 0 2 NA NA NA NA NA NA NA NA NA
#> 3 0 0 3 NA NA NA NA NA NA NA NA NA
#> 4 0 0 4 399.08 323.70 13.94 0.77 10.72 NA NA NA 6.05
#> 5 0 0 5 409.83 330.26 14.50 0.74 10.66 NA NA NA 6.21
#> 6 0 0 6 420.58 336.82 15.06 0.71 10.60 NA NA NA 6.37
#> 7 0 0 7 431.33 343.37 15.63 0.68 10.53 NA NA NA 6.54
#> 8 0 0 8 435.30 346.51 16.06 0.69 11.04 NA NA NA 6.60
#> 9 0 0 9 437.02 348.52 16.46 0.71 11.74 NA NA NA 6.62
#> 10 0 0 10 438.74 350.53 16.85 0.74 12.44 NA NA NA 6.65
#> VCO2_rel RE RER CHO FO
#> 1 NA NA NA NA NA
#> 2 NA NA NA NA NA
#> 3 NA NA NA NA NA
#> 4 4.90 NA 0.81 0.20 0.13
#> 5 5.00 NA 0.81 0.19 0.13
#> 6 5.10 NA 0.80 0.19 0.14
#> 7 5.20 NA 0.80 0.18 0.15
#> 8 5.25 NA 0.80 0.18 0.15
#> 9 5.28 NA 0.80 0.19 0.15
#> 10 5.31 NA 0.80 0.19 0.15
#> ... with 2999 more rows
With set_protocol()
a protocol can be defined without
specifying every single load step. You can paste the pre-defined segment
types pt_pre()
, pt_wu()
,
pt_const()
and pt_steps()
into
set_protocol()
in the desired order. The following graph
illustrates an example of this practice:
set_protocol(pt_pre(60), pt_wu(300,80), pt_steps(180,100,25,6,30))
#> duration load
#> 1 60 0
#> 2 300 80
#> 3 180 100
#> 4 30 0
#> 5 180 125
#> 6 30 0
#> 7 180 150
#> 8 30 0
#> 9 180 175
#> 10 30 0
#> 11 180 200
#> 12 30 0
#> 13 180 225
Modify body mass
The spiro
package calculates parameters relative to body
mass. Per default spiro()
will look for information on body
mass in the meta data of the original data file. If for some reason no
or the wrong body mass is present in the raw data file,
bodymass
can be manually given as an argument in
spiro()
or with add_bodymass()
.
# set body mass as an argument in `spiro()`
s <- spiro(file, bodymass = 68.3)
# set body mass using `add_weight()`
t <- spiro(file)
u <- add_bodymass(t, 68.3)
Work with external heart rate data
Some metabolic carts only offer complicated options for connecting
them to heart rate monitors. If heart rate data was recorded by another
kind of device (e.g. wrist watch), this data can be added within the
spiro()
call or by using add_hr()
.
# get example data file path
hpath <- spiro_example("hr_ramp.tcx")
# add heart rate data within `spiro()`
h <- spiro(file, hr_file = hpath, hr_offset = 0)
# add heart rate data with `add_hr()`
i <- spiro(file)
j <- add_hr(i, hr_file = hpath, hr_offset = 0)
add_hr()
will import the heart rate data from a .tcx
file and attach it to the existing data set. You can manually set the
starting point of the heart rate recording relative to the start of the
gas exchange measures recording with the hr_offset
argument.