Skip to contents

tar_stan_compile() creates a target to compile a Stan model on the local file system and return the original Stan model file. Does not compile the model if the compilation is already up to date.

Usage

tar_stan_compile(
  name,
  stan_file,
  quiet = TRUE,
  stdout = NULL,
  stderr = NULL,
  dir = NULL,
  pedantic = FALSE,
  include_paths = NULL,
  cpp_options = list(),
  stanc_options = list(),
  force_recompile = FALSE,
  error = targets::tar_option_get("error"),
  memory = targets::tar_option_get("memory"),
  garbage_collection = targets::tar_option_get("garbage_collection"),
  deployment = targets::tar_option_get("deployment"),
  priority = targets::tar_option_get("priority"),
  resources = targets::tar_option_get("resources"),
  storage = targets::tar_option_get("storage"),
  retrieval = targets::tar_option_get("retrieval"),
  cue = targets::tar_option_get("cue"),
  description = targets::tar_option_get("description")
)

Arguments

name

Symbol, name of the target. A target name must be a valid name for a symbol in R, and it must not start with a dot. Subsequent targets can refer to this name symbolically to induce a dependency relationship: e.g. tar_target(downstream_target, f(upstream_target)) is a target named downstream_target which depends on a target upstream_target and a function f(). In addition, a target's name determines its random number generator seed. In this way, each target runs with a reproducible seed so someone else running the same pipeline should get the same results, and no two targets in the same pipeline share the same seed. (Even dynamic branches have different names and thus different seeds.) You can recover the seed of a completed target with tar_meta(your_target, seed) and run tar_seed_set() on the result to locally recreate the target's initial RNG state.

stan_file

(string) The path to a .stan file containing a Stan program. The helper function write_stan_file() is provided for cases when it is more convenient to specify the Stan program as a string. If stan_file is not specified then exe_file must be specified.

quiet

(logical) Should the verbose output from CmdStan during compilation be suppressed? The default is TRUE, but if you encounter an error we recommend trying again with quiet=FALSE to see more of the output.

stdout

Character of length 1, file path to write the stdout stream of the model when it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to suppress stdout. Does not apply to messages, warnings, or errors.

stderr

Character of length 1, file path to write the stderr stream of the model when it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to suppress stderr. Does not apply to messages, warnings, or errors.

dir

(string) The path to the directory in which to store the CmdStan executable (or .hpp file if using $save_hpp_file()). The default is the same location as the Stan program.

pedantic

(logical) Should pedantic mode be turned on? The default is FALSE. Pedantic mode attempts to warn you about potential issues in your Stan program beyond syntax errors. For details see the Pedantic mode chapter in the Stan Reference Manual. Note: to do a pedantic check for a model without compiling it or for a model that is already compiled the $check_syntax() method can be used instead.

include_paths

(character vector) Paths to directories where Stan should look for files specified in #include directives in the Stan program.

cpp_options

(list) Any makefile options to be used when compiling the model (STAN_THREADS, STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the make/local file. For an example of using threading see the Stan case study Reduce Sum: A Minimal Example.

stanc_options

(list) Any Stan-to-C++ transpiler options to be used when compiling the model. See the Examples section below as well as the stanc chapter of the CmdStan Guide for more details on available options: https://mc-stan.org/docs/cmdstan-guide/stanc.html.

force_recompile

(logical) Should the model be recompiled even if was not modified since last compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile option.

error

Character of length 1, what to do if the target stops and throws an error. Options:

  • "stop": the whole pipeline stops and throws an error.

  • "continue": the whole pipeline keeps going.

  • "abridge": any currently running targets keep running, but no new targets launch after that. (Visit https://books.ropensci.org/targets/debugging.html to learn how to debug targets using saved workspaces.)

  • "null": The errored target continues and returns NULL. The data hash is deliberately wrong so the target is not up to date for the next run of the pipeline.

memory

Character of length 1, memory strategy. If "persistent", the target stays in memory until the end of the pipeline (unless storage is "worker", in which case targets unloads the value from memory right after storing it in order to avoid sending copious data over a network). If "transient", the target gets unloaded after every new target completes. Either way, the target gets automatically loaded into memory whenever another target needs the value. For cloud-based dynamic files (e.g. format = "file" with repository = "aws"), this memory strategy applies to the temporary local copy of the file: "persistent" means it remains until the end of the pipeline and is then deleted, and "transient" means it gets deleted as soon as possible. The former conserves bandwidth, and the latter conserves local storage.

garbage_collection

Logical, whether to run base::gc() just before the target runs.

deployment

Character of length 1. If deployment is "main", then the target will run on the central controlling R process. Otherwise, if deployment is "worker" and you set up the pipeline with distributed/parallel computing, then the target runs on a parallel worker. For more on distributed/parallel computing in targets, please visit https://books.ropensci.org/targets/crew.html.

priority

Numeric of length 1 between 0 and 1. Controls which targets get deployed first when multiple competing targets are ready simultaneously. Targets with priorities closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources

Object returned by tar_resources() with optional settings for high-performance computing functionality, alternative data storage formats, and other optional capabilities of targets. See tar_resources() for details.

storage

Character of length 1, only relevant to tar_make_clustermq() and tar_make_future(). Must be one of the following values:

  • "main": the target's return value is sent back to the host machine and saved/uploaded locally.

  • "worker": the worker saves/uploads the value.

  • "none": almost never recommended. It is only for niche situations, e.g. the data needs to be loaded explicitly from another language. If you do use it, then the return value of the target is totally ignored when the target ends, but each downstream target still attempts to load the data file (except when retrieval = "none").

    If you select storage = "none", then the return value of the target's command is ignored, and the data is not saved automatically. As with dynamic files (format = "file") it is the responsibility of the user to write to the data store from inside the target.

    The distinguishing feature of storage = "none" (as opposed to format = "file") is that in the general case, downstream targets will automatically try to load the data from the data store as a dependency. As a corollary, storage = "none" is completely unnecessary if format is "file".

retrieval

Character of length 1, only relevant to tar_make_clustermq() and tar_make_future(). Must be one of the following values:

  • "main": the target's dependencies are loaded on the host machine and sent to the worker before the target runs.

  • "worker": the worker loads the targets dependencies.

  • "none": the dependencies are not loaded at all. This choice is almost never recommended. It is only for niche situations, e.g. the data needs to be loaded explicitly from another language.

cue

An optional object from tar_cue() to customize the rules that decide whether the target is up to date.

description

Character of length 1, a custom free-form human-readable text description of the target. Descriptions appear as target labels in functions like tar_manifest() and tar_visnetwork(), and they let you select subsets of targets for the names argument of functions like tar_make(). For example, tar_manifest(names = tar_described_as(starts_with("survival model"))) lists all the targets whose descriptions start with the character string "survival model".

Value

tar_stan_compile() returns a target object to compile a Stan file. The return value of this target is a character vector containing the Stan model source file and compiled executable file. A change in either file will cause the target to rerun in the next run of the pipeline. See the "Target objects" section for background.

Details

Most of the arguments are passed to the $compile() method of the CmdStanModel class. For details, visit https://mc-stan.org/cmdstanr/reference/.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists of target objects. Target objects represent skippable steps of the analysis pipeline as described at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories explains target factories (functions like this one which generate targets) and the design specification at https://books.ropensci.org/targets-design/ details the structure and composition of target objects.

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({
library(stantargets)
# Do not use temporary storage for stan files in real projects
# or else your targets will always rerun.
path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(tar_stan_compile(compiled_model, path))
})
targets::tar_make()
})
}