Skip to contents

ts_ turns an existing function into a function that can deal with ts-boxable time series objects.

Usage

load_suggested(pkg)

ts_(fun, class = "ts", vectorize = FALSE, reclass = TRUE)

ts_apply(x, fun, ...)

Arguments

pkg

external package, to be suggested (automatically added by ts_) predict(). (See examples)

fun

function, to be made available to all time series classes

class

class that the function uses as its first argument

vectorize

should the function be vectorized? (not yet implemented)

reclass

logical, should the new function return the same same ts-boxable output as imputed?

x

ts-boxable time series, an object of class ts, xts, zoo, zooreg, data.frame, data.table, tbl, tbl_ts, tbl_time, tis, irts or timeSeries.

...

arguments passed to subfunction

Value

A function that accepts ts-boxable time series as an input.

Details

The ts_ function is a constructor function for tsbox time series functions. It can be used to wrap any function that works with time series. The default is set to R base "ts" class. ts_ deals with the conversion stuff, 'vectorizes' the function so that it can be used with multiple time series.

See also

ts_examples, for a few useful examples of functions generated by ts_.

Vignette on how to make arbitrary functions ts-boxable.

Examples

# \donttest{
ts_(rowSums)(ts_c(mdeaths, fdeaths))
#>       Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec
#> 1974 3035 2552 2704 2554 2014 1655 1721 1524 1596 2074 2199 2512
#> 1975 2933 2889 2938 2497 1870 1726 1607 1545 1396 1787 2076 2837
#> 1976 2787 3891 3179 2011 1636 1580 1489 1300 1356 1653 2013 2823
#> 1977 3102 2294 2385 2444 1748 1554 1498 1361 1346 1564 1640 2293
#> 1978 2815 3137 2679 1969 1870 1633 1529 1366 1357 1570 1535 2491
#> 1979 3084 2605 2573 2143 1693 1504 1461 1354 1333 1492 1781 1915
ts_plot(mean = ts_(rowMeans)(ts_c(mdeaths, fdeaths)), mdeaths, fdeaths)

ts_(function(x) predict(prcomp(x)))(ts_c(mdeaths, fdeaths))
#>                   PC1         PC2
#> Jan 1974  -719.330257  74.1363473
#> Feb 1974  -388.333793 -19.8122618
#> Mar 1974  -453.416215 102.6796905
#> Apr 1974  -396.764810 -36.2109799
#> May 1974    18.261029 -34.3260665
#> Jun 1974   287.074335 -49.9595755
#> Jul 1974   245.151602 -29.2597094
#> Aug 1974   401.244784 -17.4309950
#> Sep 1974   331.287692 -52.4453524
#> Oct 1974    -4.399533  21.2302017
#> Nov 1974  -122.334805 -31.1937578
#> Dec 1974  -363.906302 -34.6883387
#> Jan 1975  -663.811186  20.1027204
#> Feb 1975  -665.834341 -64.9614133
#> Mar 1975  -693.112655 -40.4482824
#> Apr 1975  -351.113758 -31.6304258
#> May 1975   121.441675 -51.6394787
#> Jun 1975   238.877127 -35.0589311
#> Jul 1975   339.743276 -12.2769184
#> Aug 1975   392.217064  -0.5935288
#> Sep 1975   492.351734 -34.2691545
#> Oct 1975   183.491445 -55.4899415
#> Nov 1975   -34.212759 -46.0094560
#> Dec 1975  -607.268602 -20.5535967
#> Jan 1976  -563.164759  -6.8842504
#> Feb 1976 -1380.350191  63.7129835
#> Mar 1976  -855.406609  13.2329294
#> Apr 1976    26.521460 -20.1569000
#> May 1976   327.145886  10.6644364
#> Jun 1976   364.195335  -3.3832793
#> Jul 1976   424.332157 -26.3737691
#> Aug 1976   574.114360 -14.9592352
#> Sep 1976   537.064911  -0.9115195
#> Oct 1976   310.308419   1.6367162
#> Nov 1976    32.345249  -2.6616584
#> Dec 1976  -598.143305 -24.3914291
#> Jan 1977  -802.750298  -2.0088865
#> Feb 1977  -165.341432  39.8233535
#> Mar 1977  -247.956986   9.3656760
#> Apr 1977  -313.552552 -38.9894866
#> May 1977   253.595249  40.0634816
#> Jun 1977   372.918388 -30.0648898
#> Jul 1977   435.187879  15.8536309
#> Aug 1977   527.500866 -14.5324242
#> Sep 1977   562.772142  41.9736559
#> Oct 1977   359.821178 -42.9669470
#> Nov 1977   303.704711 -37.7763658
#> Dec 1977  -176.477253  11.5215252
#> Jan 1978  -573.191426  20.3456219
#> Feb 1978  -840.092477 -26.9600722
#> Mar 1978  -479.611329  -5.2036539
#> Apr 1978    73.086513  13.9560871
#> May 1978   155.982167  30.4881930
#> Jun 1978   329.375437  10.4938507
#> Jul 1978   417.449042  30.2179506
#> Aug 1978   530.546842   1.8297893
#> Sep 1978   552.586826  37.8192195
#> Oct 1978   378.937331  13.4296194
#> Nov 1978   408.603845  20.1302114
#> Dec 1978  -337.334205  -9.8101621
#> Jan 1979  -808.562151 -48.6588851
#> Feb 1979  -384.775367  85.3178367
#> Mar 1979  -386.944540  21.7938673
#> Apr 1979   -51.841388  34.2789704
#> May 1979   291.363546  29.5489314
#> Jun 1979   439.500964  37.0526237
#> Jul 1979   466.158007  22.0059611
#> Aug 1979   550.978546  28.5233369
#> Sep 1979   578.098904  54.7051273
#> Oct 1979   440.743505  18.1196871
#> Nov 1979   214.815375   8.0459650
#> Dec 1979   138.438483  70.8517803
ts_(function(x) predict(prcomp(x, scale = TRUE)))(ts_c(mdeaths, fdeaths))
#>                  PC1          PC2
#> Jan 1974 -2.38059153  0.297375755
#> Feb 1974 -1.10407959 -0.094336308
#> Mar 1974 -1.66989390  0.425768781
#> Apr 1974 -1.07972032 -0.164404804
#> May 1974  0.15862748 -0.145749085
#> Jun 1974  1.01171910 -0.205459272
#> Jul 1974  0.82340530 -0.118358737
#> Aug 1974  1.25549919 -0.063975943
#> Sep 1974  1.15177331 -0.214915709
#> Oct 1974 -0.07744196  0.090320349
#> Nov 1974 -0.27229290 -0.136006514
#> Dec 1974 -0.98583429 -0.157077565
#> Jan 1975 -2.05063607  0.068633560
#> Feb 1975 -1.79924985 -0.293760756
#> Mar 1975 -1.95520760 -0.190042121
#> Apr 1975 -0.95674317 -0.143724409
#> May 1975  0.52031447 -0.216856050
#> Jun 1975  0.82214899 -0.143221986
#> Jul 1975  1.05554748 -0.043596172
#> Aug 1975  1.17747892  0.007514434
#> Sep 1975  1.57955654 -0.133367648
#> Oct 1975  0.71796416 -0.231668858
#> Nov 1975  0.03669604 -0.196859691
#> Dec 1975 -1.75809966 -0.103099916
#> Jan 1976 -1.66726798 -0.043744162
#> Feb 1976 -4.33047208  0.236050681
#> Mar 1976 -2.60415742  0.034464960
#> Apr 1976  0.14050471 -0.085182043
#> May 1976  0.94835331  0.053803167
#> Jun 1976  1.10192625 -0.005086388
#> Jul 1976  1.35177002 -0.101477785
#> Aug 1976  1.76620010 -0.049020841
#> Sep 1976  1.61262716  0.009868713
#> Oct 1976  0.92520532  0.014917216
#> Nov 1976  0.10501151 -0.010509510
#> Dec 1976 -1.71913092 -0.119214046
#> Jan 1977 -2.40018844 -0.029111419
#> Feb 1977 -0.61614326  0.165399575
#> Mar 1977 -0.77160427  0.033545503
#> Apr 1977 -0.82187976 -0.174109604
#> May 1977  0.63890542  0.177149238
#> Jun 1977  1.20882704 -0.118517068
#> Jul 1977  1.25650713  0.078673660
#> Aug 1977  1.62518297 -0.048396311
#> Sep 1977  1.55989133  0.193202314
#> Oct 1977  1.20861645 -0.173810528
#> Nov 1977  1.02469609 -0.153137378
#> Dec 1977 -0.56386638  0.044558869
#> Jan 1978 -1.77973573  0.071988536
#> Feb 1978 -2.43660680 -0.136350606
#> Mar 1978 -1.42190044 -0.034446056
#> Apr 1978  0.17684028  0.061319263
#> May 1978  0.37528731  0.133862597
#> Jun 1978  0.95555275  0.053133620
#> Jul 1978  1.15986012  0.139406278
#> Aug 1978  1.58479235  0.021378806
#> Sep 1978  1.54193414  0.175245121
#> Oct 1978  1.09523079  0.066907960
#> Nov 1978  1.16387740  0.096209669
#> Dec 1978 -0.98147861 -0.050425137
#> Jan 1979 -2.27642119 -0.227972391
#> Feb 1979 -1.41159439  0.353571087
#> Mar 1979 -1.22583821  0.082926359
#> Apr 1979 -0.25914309  0.144688654
#> May 1979  0.78393983  0.133328100
#> Jun 1979  1.20527596  0.169084155
#> Jul 1979  1.33072071  0.105673351
#> Aug 1979  1.56524770  0.135606836
#> Sep 1979  1.56730136  0.247826227
#> Oct 1979  1.26630196  0.088468492
#> Nov 1979  0.61956412  0.039773219
#> Dec 1979  0.20053725  0.305347710
ts_(dygraphs::dygraph, class = "xts")
#> function (x, ...) 
#> {
#>     load_suggested("dygraphs")
#>     check_ts_boxable(x)
#>     z <- dygraphs::dygraph(ts_xts(x), ...)
#>     copy_class(z, x)
#> }
#> <environment: 0x5632782a7570>

# attach series to serach path
ts_attach <- ts_(attach, class = "tslist", reclass = FALSE)
ts_attach(EuStockMarkets)
ts_plot(DAX, SMI)

detach()
# }