Skip to contents

Taking into account the guide on “How to obtain site info?”, here are two examples on how to aggregate information of many eLTER sites.

By get_network_* functions:

Five functions were developed to access and download informationof an entire eLTER network.

Get general information of the network’s sites:

Knowing the network elTER id (DEIMS ID of the Network, e.g. LTER-Italy https://deims.org/network/7fef6b73-e5cb-4cd2-b438-ed32eb1504b3), the get_network_sites can download general info, such as name, DEIMS ID and spatial coordinates of the sites belonging to the network selected. A map of the sites can be produced.

library(dplyr)
library(leaflet)
library(ReLTER)

listItaSites <- get_network_sites(
 networkDEIMSID =
   "https://deims.org/network/7fef6b73-e5cb-4cd2-b438-ed32eb1504b3"
) %>%
  filter(!grepl('^IT', title))

knitr::kable(
  listItaSites[1:10, ],
  caption = "The list of site for LTER-Italy network"
)
The list of site for LTER-Italy network
title changed uri coordinates
Acquatina - Italy 2023-10-25T21:48:55+0200 https://deims.org/8e1909ae-afc0-4207-9314-68e234d57405 POINT (18.24 40.44)
Torgnon grassland Tellinod (IT19 Aosta Valley) - Italy 2023-10-27T10:46:01+0200 https://deims.org/a03ef869-aa6f-49cf-8e86-f791ee482ca9 POINT (7.579028 45.84606)
Renon BOL1 - Italy 2023-10-27T10:44:32+0200 https://deims.org/5d32cbf8-ab7c-4acb-b29f-600fec830a1d POINT (11.4336 46.5868)
Collelongo-Selva Piana ABR1 - Italy 2023-07-24T16:06:23+0200 https://deims.org/9b1d144a-dc37-4b0e-8cda-1dda1d7667da POINT (13.5881 41.8494)
Colognole TOS1 - Italy 2023-10-26T13:52:46+0200 https://deims.org/fdd9b462-d2a9-441a-80a1-f4e8947f5577 POINT (10.4386 43.5094)
Tarvisio FRI2 - Italy 2023-10-27T10:45:36+0200 https://deims.org/5907d0b6-7b4d-4260-a669-4bc0f61d1696 POINT (13.5933 46.4894)
Val Masino LOM1 - Italy 2023-10-27T10:46:51+0200 https://deims.org/68a5673c-9172-48cc-88e5-b9408b203309 POINT (9.59829 46.24215)
Alimini - Italy 2023-10-26T13:51:11+0200 https://deims.org/765cad42-25da-4893-b4cc-eb1f393b4b47 POINT (18.441 40.202)
Appennino centrale: Gran Sasso d’Italia - Italy 2023-07-24T14:20:51+0200 https://deims.org/c0738b00-854c-418f-8d4f-69b03486e9fd POINT (13.55498 42.44625)
Appennino centrale: Velino-Duchessa - Italy 2023-07-24T14:20:48+0200 https://deims.org/12c79ecb-7890-4b75-9655-0883dacd8a29 POINT (13.3682 42.15693)
listItaSitesMap <- leaflet(listItaSites) %>%
  addProviderTiles(provider = "CartoDB.PositronNoLabels",
                            group = "Basemap",
                            layerId = 123) %>%
  addTiles("http://{s}.basemaps.cartocdn.com/light_only_labels/{z}/{x}/{y}.png") %>%
  addCircleMarkers(
    data = listItaSites,
    radius = 3,
    weight = 2,
    opacity = 0.5,
    fill = TRUE,
    fillOpacity = 0.2
  )
listItaSitesMap
## Error in path.expand(path): invalid 'path' argument

Get other information sites in the network:

Four additional functions were implemented to obtain site information in the network. Each function gets specific information:

The following example perform the request to get all related resources (e.g. activities, datasets, etc.) of the network. The output is a table containing the title, id and time stamp of the last changes of the related resources shared by the network’s sites.

IT_DEIMS.ID <- "https://deims.org/network/7fef6b73-e5cb-4cd2-b438-ed32eb1504b3"
listRelatedResources <- get_network_related_resources(
  networkDEIMSID = IT_DEIMS.ID
)

# Table of the network's related resources
knitr::kable(
  head(listRelatedResources, 10),
  caption = "The list of sites for LTER-Italy network"
)
The list of sites for LTER-Italy network
relatedResourcesTitle uri relatedResourcesChanged
NA NA NA
LTER_EU_IT_077 Soil Temperature https://deims.org/dataset/a84c3800-0384-11e5-870c-005056ab003f 2020-01-07 14:49:00
Deposition of N-NH4 and N-NO3 Renon Bol1 1985-207 https://deims.org/dataset/6499a7cc-df94-45ac-92ed-62f43360411d 2020-02-27 09:38:00
LTER Collelongo-Selva Piana, Italy, Vegetation data 1999-2016 https://deims.org/dataset/28fe3227-fb9f-4e73-9a2a-30c07e90104d 2019-12-20 13:21:00
LTER Collelongo-Selva Piana, Italy, Precipitation and Throughfall data 1998-2017 https://deims.org/dataset/d1497375-56f5-4140-a399-adfb32f925af 2020-09-02 13:43:00
LTER Val Masino, Italy, Vegetation data 1999-2012 https://deims.org/dataset/67727a8a-fe1f-44eb-88b5-bf98bc443104 2019-12-20 13:21:00
LTER Val Masino LOM1, Italy, Precipitation and throughfall data 1997-2015 https://deims.org/dataset/94b8f6fb-2cba-4b45-90e2-afd45b3e655e 2019-12-20 13:21:00
LTER_EU_IT_021: Vegetation monitoring by 10x10 m permanent plots https://deims.org/dataset/1f49ee00-198f-11e5-a766-005056ab003f 2022-11-19 11:10:00
LTER_EU_IT_025: Vegetation monitoring by 10x10 permanent plots https://deims.org/dataset/0c540fe8-1984-11e5-a766-005056ab003f 2019-11-29 11:31:00
LTER_EU_IT_025: Soil and air temperature measurement https://deims.org/dataset/9edc9b28-1984-11e5-a766-005056ab003f 2019-11-29 11:31:00

By get_site_info function:

Start with the list of the LTER-Italy network sites (see first example above), or by using any DEIMS ID list, through the get_site_info function (already described here).

The example below shows how to select, from the list of LTER-Italy sites, only those with a lake environment and map those sites.

sites <- as_tibble(listItaSites) %>%
  filter(grepl("Lago", title)) %>%
  filter(!row_number() %in% c(1, 21, 22))

allSitesBounds <- lapply(sites$uri, function(s) {
  get_site_info(s, category = "Boundaries")
})
allSitesBounds <- do.call(rbind, allSitesBounds) # Creates an `sf` object

# Map
leaflet(data = allSitesBounds) %>%
  addPolygons() %>% 
  addProviderTiles(provider = "CartoDB.PositronNoLabels",
                            group = "Basemap",
                            layerId = 123) %>%
  addTiles(
    "http://{s}.basemaps.cartocdn.com/light_only_labels/{z}/{x}/{y}.png")
## Error in path.expand(path): invalid 'path' argument

Using the same LTER-Italy sites list, the next example provide a contact list of all lake site managers.

# Using sites from previous example
allSitesContacts <- lapply(sites$uri, function(s) {
  get_site_info(s, category = "Contacts")
})
allSitesContacts <- do.call(rbind, allSitesContacts)

contacts <- tibble::tibble(
  siteName = NA,
  managerName = NA,
  managerEmail = NA,
  managerORCID = NA
)

for (i in seq_along(allSitesContacts)) {
  contacts <- contacts %>% 
    tibble::add_row(
      siteName = allSitesContacts$title[[i]],
      managerName = allSitesContacts$siteManager[[1]]$name,
      managerEmail = allSitesContacts$siteManager[[1]]$email,
      managerORCID = allSitesContacts$siteManager[[1]]$orcid
    )
}
# Contacts table
knitr::kable(
  head(contacts, 10),
  caption = "List of the contacts"
)
List of the contacts
siteName managerName managerEmail managerORCID
NA NA NA NA
Lago Bidighinzu - Italy NA NA NA
Lago Braies - Italy NA NA NA
Lago Cedrino - Italy NA NA NA
Lago Cuga - Italy NA NA NA
Lago di Candia - Italy NA NA NA
Lago di Como - Italy NA NA NA
Lago di Garda - Italy NA NA NA
Lago di Orta - Italy NA NA NA
LTSER Lago di Tovel - Italy NA NA NA