Find multi-tissue eQTL Metasoft
results.
This service returns multi-tissue eQTL Metasoft results for a given gene and variant in a specified dataset.
A Versioned GENCODE ID must be provided.
For each tissue, the results include: m-value (mValue), normalized effect size (nes), p-value (pValue), and standard error (se).
The m-value is the posterior probability that an eQTL effect exists in each tissue tested in the cross-tissue meta-analysis (Han and Eskin, PLoS Genetics 8(3): e1002555, 2012).
The normalized effect size is the slope of the linear regression of normalized expression data versus the three genotype categories using single-tissue eQTL analysis, representing eQTL effect size.
The p-value is from a t-test that compares observed NES from single-tissue eQTL analysis to a null NES of 0.
By default, the service queries the latest GTEx release. The retrieved data is split into pages with items_per_page
entries per page
Arguments
- gencodeId
String. A Versioned GENCODE ID of a gene, e.g. "ENSG00000065613.9".
- variantId
String. A gtex variant ID.
- datasetId
String. Unique identifier of a dataset. Usually includes a data source and data release. Options: "gtex_v8", "gtex_snrnaseq_pilot".
- page
Integer (default = 0).
- itemsPerPage
Integer (default = 250). Set globally to maximum value 100000 with
options(list(gtexr.itemsPerPage = 100000))
.- .verbose
Logical. If
TRUE
(default), print paging information. Set toFALSE
globally withoptions(list(gtexr.verbose = FALSE))
.- .return_raw
Logical. If
TRUE
, return the raw API JSON response. Default =FALSE
See also
Other Static Association Endpoints:
get_eqtl_genes()
,
get_fine_mapping()
,
get_independent_eqtl()
,
get_significant_single_tissue_eqtls()
,
get_significant_single_tissue_eqtls_by_location()
,
get_significant_single_tissue_ieqtls()
,
get_significant_single_tissue_isqtls()
,
get_significant_single_tissue_sqtls()
,
get_sqtl_genes()
Examples
# search by gene
get_multi_tissue_eqtls(gencodeId = "ENSG00000132693.12")
#>
#> ── Paging info ─────────────────────────────────────────────────────────────────
#> • numberOfPages = 1
#> • page = 0
#> • maxItemsPerPage = 250
#> • totalNumberOfItems = 93
#> # A tibble: 93 × 5
#> gencodeId datasetId metaP variantId tissues
#> <chr> <chr> <dbl> <chr> <list>
#> 1 ENSG00000132693.12 gtex_v8 0.00142 chr1_159476920_T_C_b38 <tibble>
#> 2 ENSG00000132693.12 gtex_v8 0.0927 chr1_159245536_C_T_b38 <tibble>
#> 3 ENSG00000132693.12 gtex_v8 0.00158 chr1_159439013_C_T_b38 <tibble>
#> 4 ENSG00000132693.12 gtex_v8 0.000735 chr1_159441913_T_A_b38 <tibble>
#> 5 ENSG00000132693.12 gtex_v8 0.00158 chr1_159471651_G_A_b38 <tibble>
#> 6 ENSG00000132693.12 gtex_v8 0.00158 chr1_159396484_C_T_b38 <tibble>
#> 7 ENSG00000132693.12 gtex_v8 0.00158 chr1_159386699_AT_A_b38 <tibble>
#> 8 ENSG00000132693.12 gtex_v8 0.00263 chr1_159545608_A_T_b38 <tibble>
#> 9 ENSG00000132693.12 gtex_v8 0.00142 chr1_159476580_G_A_b38 <tibble>
#> 10 ENSG00000132693.12 gtex_v8 0.00166 chr1_159505857_T_A_b38 <tibble>
#> # ℹ 83 more rows
# note that 'tissues' is a list-column
x <- get_multi_tissue_eqtls(gencodeId = "ENSG00000132693.12",
variantId = "chr1_159476920_T_C_b38")
#>
#> ── Paging info ─────────────────────────────────────────────────────────────────
#> • numberOfPages = 1
#> • page = 0
#> • maxItemsPerPage = 250
#> • totalNumberOfItems = 1
x$tissues[[1]]
#> # A tibble: 49 × 5
#> tissue mValue pValue se nes
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Thyroid 0.983 0.0000292 0.0593 0.250
#> 2 Testis 0.342 0.0404 0.0835 -0.172
#> 3 Small_Intestine_Terminal_Ileum 0.551 0.864 0.122 -0.0211
#> 4 Brain_Frontal_Cortex_BA9 0.489 0.204 0.113 -0.144
#> 5 Skin_Not_Sun_Exposed_Suprapubic 0.552 0.806 0.0654 0.0160
#> 6 Vagina 0.514 0.437 0.130 -0.102
#> 7 Whole_Blood 0.494 0.632 0.0407 0.0195
#> 8 Breast_Mammary_Tissue 0.679 0.395 0.0746 0.0636
#> 9 Pituitary 0.421 0.175 0.0972 -0.132
#> 10 Minor_Salivary_Gland 0.678 0.349 0.126 0.118
#> # ℹ 39 more rows