Skip to contents

Stations

weathercan includes the function stations() which returns a list of stations and their details (including station_id).

## # A tibble: 6 × 16
##   prov  station_name        station_id climate_id WMO_id TC_id   lat   lon  elev tz        interval start   end normals normals_1981_2010 normals_1971_2000
##   <chr> <chr>                    <dbl> <chr>       <dbl> <chr> <dbl> <dbl> <dbl> <chr>     <chr>    <dbl> <dbl> <lgl>   <lgl>             <lgl>            
## 1 AB    DAYSLAND                  1795 301AR54        NA <NA>   52.9 -112.  689. Etc/GMT+7 day       1908  1922 FALSE   FALSE             FALSE            
## 2 AB    DAYSLAND                  1795 301AR54        NA <NA>   52.9 -112.  689. Etc/GMT+7 hour        NA    NA FALSE   FALSE             FALSE            
## 3 AB    DAYSLAND                  1795 301AR54        NA <NA>   52.9 -112.  689. Etc/GMT+7 month     1908  1922 FALSE   FALSE             FALSE            
## 4 AB    EDMONTON CORONATION       1796 301BK03        NA <NA>   53.6 -114.  671. Etc/GMT+7 day       1978  1979 FALSE   FALSE             FALSE            
## 5 AB    EDMONTON CORONATION       1796 301BK03        NA <NA>   53.6 -114.  671. Etc/GMT+7 hour        NA    NA FALSE   FALSE             FALSE            
## 6 AB    EDMONTON CORONATION       1796 301BK03        NA <NA>   53.6 -114.  671. Etc/GMT+7 month     1978  1979 FALSE   FALSE             FALSE
## Rows: 26,382
## Columns: 16
## $ prov              <chr> "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", "AB", …
## $ station_name      <chr> "DAYSLAND", "DAYSLAND", "DAYSLAND", "EDMONTON CORONATION", "EDMONTON CORONATION", "EDMONTON CORONATION", "FLEET", "FLEET", "FLEET", …
## $ station_id        <dbl> 1795, 1795, 1795, 1796, 1796, 1796, 1797, 1797, 1797, 1798, 1798, 1798, 1799, 1799, 1799, 1800, 1800, 1800, 1801, 1801, 1801, 1802, …
## $ climate_id        <chr> "301AR54", "301AR54", "301AR54", "301BK03", "301BK03", "301BK03", "301B6L0", "301B6L0", "301B6L0", "301B8LR", "301B8LR", "301B8LR", …
## $ WMO_id            <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ TC_id             <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
## $ lat               <dbl> 52.87, 52.87, 52.87, 53.57, 53.57, 53.57, 52.15, 52.15, 52.15, 53.20, 53.20, 53.20, 52.40, 52.40, 52.40, 54.08, 54.08, 54.08, 53.52,…
## $ lon               <dbl> -112.28, -112.28, -112.28, -113.57, -113.57, -113.57, -111.73, -111.73, -111.73, -110.15, -110.15, -110.15, -115.20, -115.20, -115.2…
## $ elev              <dbl> 688.8, 688.8, 688.8, 670.6, 670.6, 670.6, 838.2, 838.2, 838.2, 640.0, 640.0, 640.0, 1036.0, 1036.0, 1036.0, 585.2, 585.2, 585.2, 668…
## $ tz                <chr> "Etc/GMT+7", "Etc/GMT+7", "Etc/GMT+7", "Etc/GMT+7", "Etc/GMT+7", "Etc/GMT+7", "Etc/GMT+7", "Etc/GMT+7", "Etc/GMT+7", "Etc/GMT+7", "E…
## $ interval          <chr> "day", "hour", "month", "day", "hour", "month", "day", "hour", "month", "day", "hour", "month", "day", "hour", "month", "day", "hour…
## $ start             <dbl> 1908, NA, 1908, 1978, NA, 1978, 1987, NA, 1987, 1987, NA, 1987, 1980, NA, 1980, 1980, NA, 1980, 1986, NA, 1986, 1987, NA, 1987, 1986…
## $ end               <dbl> 1922, NA, 1922, 1979, NA, 1979, 1990, NA, 1990, 1998, NA, 1998, 2009, NA, 2007, 1981, NA, 1981, 2019, NA, 2007, 1991, NA, 1991, 1995…
## $ normals           <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRU…
## $ normals_1981_2010 <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRU…
## $ normals_1971_2000 <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,…

You can look through this data frame directly, or you can use the stations_search function:

stations_search("Kamloops")
## # A tibble: 40 × 16
##    prov  station_name         station_id climate_id WMO_id TC_id   lat   lon  elev tz        interval start   end normals normals_1981_2010 normals_1971_2000
##    <chr> <chr>                     <dbl> <chr>       <dbl> <chr> <dbl> <dbl> <dbl> <chr>     <chr>    <dbl> <dbl> <lgl>   <lgl>             <lgl>            
##  1 BC    KAMLOOPS                   1274 1163779        NA <NA>   50.7 -120.  379. Etc/GMT+8 day       1878  1982 FALSE   FALSE             FALSE            
##  2 BC    KAMLOOPS                   1274 1163779        NA <NA>   50.7 -120.  379. Etc/GMT+8 month     1878  1982 FALSE   FALSE             FALSE            
##  3 BC    KAMLOOPS A                 1275 1163780     71887 YKA    50.7 -120.  345. Etc/GMT+8 day       1951  2013 TRUE    TRUE              TRUE             
##  4 BC    KAMLOOPS A                 1275 1163780     71887 YKA    50.7 -120.  345. Etc/GMT+8 hour      1953  2013 TRUE    TRUE              TRUE             
##  5 BC    KAMLOOPS A                 1275 1163780     71887 YKA    50.7 -120.  345. Etc/GMT+8 month     1951  2013 TRUE    TRUE              TRUE             
##  6 BC    KAMLOOPS A                51423 1163781     71887 YKA    50.7 -120.  345. Etc/GMT+8 day       2013  2023 FALSE   FALSE             FALSE            
##  7 BC    KAMLOOPS A                51423 1163781     71887 YKA    50.7 -120.  345. Etc/GMT+8 hour      2013  2023 FALSE   FALSE             FALSE            
##  8 BC    KAMLOOPS AFTON MINES       1276 1163790        NA <NA>   50.7 -120.  701  Etc/GMT+8 day       1977  1993 FALSE   FALSE             TRUE             
##  9 BC    KAMLOOPS AFTON MINES       1276 1163790        NA <NA>   50.7 -120.  701  Etc/GMT+8 month     1977  1993 FALSE   FALSE             TRUE             
## 10 BC    KAMLOOPS AUT              42203 1163842     71741 ZKA    50.7 -120.  345  Etc/GMT+8 day       2006  2023 FALSE   FALSE             FALSE            
## # ℹ 30 more rows

You can narrow down your search by specifying time intervals (options are “hour”, “day”, or “month”):

stations_search("Kamloops", interval = "hour")
## # A tibble: 3 × 16
##   prov  station_name station_id climate_id WMO_id TC_id   lat   lon  elev tz        interval start   end normals normals_1981_2010 normals_1971_2000
##   <chr> <chr>             <dbl> <chr>       <dbl> <chr> <dbl> <dbl> <dbl> <chr>     <chr>    <dbl> <dbl> <lgl>   <lgl>             <lgl>            
## 1 BC    KAMLOOPS A         1275 1163780     71887 YKA    50.7 -120.  345. Etc/GMT+8 hour      1953  2013 TRUE    TRUE              TRUE             
## 2 BC    KAMLOOPS A        51423 1163781     71887 YKA    50.7 -120.  345. Etc/GMT+8 hour      2013  2023 FALSE   FALSE             FALSE            
## 3 BC    KAMLOOPS AUT      42203 1163842     71741 ZKA    50.7 -120.  345  Etc/GMT+8 hour      2006  2023 FALSE   FALSE             FALSE

You can specify more than one interval:

stations_search("Kamloops", interval = c("hour", "month"))
## # A tibble: 21 × 16
##    prov  station_name            station_id climate_id WMO_id TC_id   lat   lon  elev tz        interval start   end normals normals_1981_2010 normals_1971_2000
##    <chr> <chr>                        <dbl> <chr>       <dbl> <chr> <dbl> <dbl> <dbl> <chr>     <chr>    <dbl> <dbl> <lgl>   <lgl>             <lgl>            
##  1 BC    KAMLOOPS                      1274 1163779        NA <NA>   50.7 -120.  379. Etc/GMT+8 month     1878  1982 FALSE   FALSE             FALSE            
##  2 BC    KAMLOOPS A                    1275 1163780     71887 YKA    50.7 -120.  345. Etc/GMT+8 hour      1953  2013 TRUE    TRUE              TRUE             
##  3 BC    KAMLOOPS A                    1275 1163780     71887 YKA    50.7 -120.  345. Etc/GMT+8 month     1951  2013 TRUE    TRUE              TRUE             
##  4 BC    KAMLOOPS A                   51423 1163781     71887 YKA    50.7 -120.  345. Etc/GMT+8 hour      2013  2023 FALSE   FALSE             FALSE            
##  5 BC    KAMLOOPS AFTON MINES          1276 1163790        NA <NA>   50.7 -120.  701  Etc/GMT+8 month     1977  1993 FALSE   FALSE             TRUE             
##  6 BC    KAMLOOPS AUT                 42203 1163842     71741 ZKA    50.7 -120.  345  Etc/GMT+8 hour      2006  2023 FALSE   FALSE             FALSE            
##  7 BC    KAMLOOPS AUT                 42203 1163842     71741 ZKA    50.7 -120.  345  Etc/GMT+8 month     2006  2006 FALSE   FALSE             FALSE            
##  8 BC    KAMLOOPS CDA                  1277 1163810        NA <NA>   50.7 -120.  345  Etc/GMT+8 month     1949  1977 FALSE   FALSE             FALSE            
##  9 BC    KAMLOOPS CHERRY CREEK         1278 1163814        NA <NA>   50.7 -121.  556. Etc/GMT+8 month     1970  1974 FALSE   FALSE             FALSE            
## 10 BC    KAMLOOPS CHERRY CREEK 2       1279 1163815        NA <NA>   50.6 -121.  701  Etc/GMT+8 month     1974  1977 FALSE   FALSE             FALSE            
## # ℹ 11 more rows

You can also search by proximity. These results include a new column distance specifying the distance in km from the coordinates:

stations_search(coords = c(50.667492, -120.329049), dist = 20, interval = "hour")
## # A tibble: 3 × 17
##   prov  station_name station_id climate_id WMO_id TC_id   lat   lon  elev tz        interval start   end normals normals_1981_2010 normals_1971_2000 distance
##   <chr> <chr>             <dbl> <chr>       <dbl> <chr> <dbl> <dbl> <dbl> <chr>     <chr>    <dbl> <dbl> <lgl>   <lgl>             <lgl>                <dbl>
## 1 BC    KAMLOOPS A         1275 1163780     71887 YKA    50.7 -120.  345. Etc/GMT+8 hour      1953  2013 TRUE    TRUE              TRUE                  8.61
## 2 BC    KAMLOOPS AUT      42203 1163842     71741 ZKA    50.7 -120.  345  Etc/GMT+8 hour      2006  2023 FALSE   FALSE             FALSE                 8.61
## 3 BC    KAMLOOPS A        51423 1163781     71887 YKA    50.7 -120.  345. Etc/GMT+8 hour      2013  2023 FALSE   FALSE             FALSE                 9.26

We can also perform more complex searches using filter() function from the dplyr package direction on the data returned by stations():

BCstations <- stations() %>%
  filter(prov %in% c("BC")) %>%
  filter(interval == "hour") %>%
  filter(lat > 49 & lat < 49.5) %>%
  filter(lon > -119 & lon < -116) %>%
  filter(start <= 2002) %>%
  filter(end >= 2016)
BCstations
## # A tibble: 3 × 16
##   prov  station_name                station_id climate_id WMO_id TC_id   lat   lon  elev tz     interval start   end normals normals_1981_2010 normals_1971_2000
##   <chr> <chr>                            <dbl> <chr>       <dbl> <chr> <dbl> <dbl> <dbl> <chr>  <chr>    <dbl> <dbl> <lgl>   <lgl>             <lgl>            
## 1 BC    CRESTON CAMPBELL SCIENTIFIC       6838 114B1F0     71770 WJR    49.1 -116.  641. Etc/G… hour      1994  2023 FALSE   FALSE             FALSE            
## 2 BC    NELSON CS                         6839 1145M29     71776 WNM    49.5 -117.  535. Etc/G… hour      1994  2023 FALSE   FALSE             FALSE            
## 3 BC    WARFIELD RCS                     31067 1148705     71401 XWF    49.1 -118.  567. Etc/G… hour      2001  2023 FALSE   FALSE             FALSE
## weather_dl() accepts numbers so we can create a vector to input into weather:
stn_vector <- BCstations$station_id
stn_vector
## [1]  6838  6839 31067

You can update this list of stations with

And check when it was last updated with

## $ECCC_modified
## [1] "2023-01-24 23:30:00 UTC"
## 
## $weathercan_modified
## [1] "2024-11-08"

Weather

Once you have your station_id(s) you can download weather data:

kam <- weather_dl(station_ids = 51423, start = "2016-01-01", end = "2016-02-15")
## As of weathercan v0.3.0 time display is either local time or UTC
## See Details under ?weather_dl for more information.
## This message is shown once per session
kam
## # A tibble: 1,104 × 37
##    station_name station_id station_operator prov    lat   lon  elev climate_id WMO_id TC_id date       time                year  month day   hour  weather  hmdx
##    <chr>             <dbl> <lgl>            <chr> <dbl> <dbl> <dbl> <chr>      <chr>  <chr> <date>     <dttm>              <chr> <chr> <chr> <chr> <chr>   <dbl>
##  1 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 00:00:00 2016  01    01    00:00 <NA>       NA
##  2 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 01:00:00 2016  01    01    01:00 Mostly…    NA
##  3 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 02:00:00 2016  01    01    02:00 <NA>       NA
##  4 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 03:00:00 2016  01    01    03:00 <NA>       NA
##  5 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 04:00:00 2016  01    01    04:00 Cloudy     NA
##  6 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 05:00:00 2016  01    01    05:00 <NA>       NA
##  7 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 06:00:00 2016  01    01    06:00 <NA>       NA
##  8 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 07:00:00 2016  01    01    07:00 Cloudy     NA
##  9 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 08:00:00 2016  01    01    08:00 <NA>       NA
## 10 KAMLOOPS A        51423 NA               BC     50.7 -120.  345. 1163781    71887  YKA   2016-01-01 2016-01-01 09:00:00 2016  01    01    09:00 Snow       NA
## # ℹ 1,094 more rows
## # ℹ 19 more variables: hmdx_flag <chr>, precip_amt <dbl>, precip_amt_flag <chr>, pressure <dbl>, pressure_flag <chr>, rel_hum <dbl>, rel_hum_flag <chr>,
## #   temp <dbl>, temp_dew <dbl>, temp_dew_flag <chr>, temp_flag <chr>, visib <dbl>, visib_flag <chr>, wind_chill <dbl>, wind_chill_flag <chr>, wind_dir <dbl>,
## #   wind_dir_flag <chr>, wind_spd <dbl>, wind_spd_flag <chr>

You can also download data from multiple stations at once:

kam.pg <- weather_dl(station_ids = c(48248, 51423), start = "2016-01-01", end = "2016-02-15")

kam.pg
## # A tibble: 2,208 × 37
##    station_name station_id station_operator prov    lat   lon  elev climate_id WMO_id TC_id date       time                year  month day   hour  weather  hmdx
##    <chr>             <dbl> <lgl>            <chr> <dbl> <dbl> <dbl> <chr>      <chr>  <chr> <date>     <dttm>              <chr> <chr> <chr> <chr> <chr>   <dbl>
##  1 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 00:00:00 2016  01    01    00:00 <NA>       NA
##  2 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 01:00:00 2016  01    01    01:00 <NA>       NA
##  3 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 02:00:00 2016  01    01    02:00 <NA>       NA
##  4 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 03:00:00 2016  01    01    03:00 <NA>       NA
##  5 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 04:00:00 2016  01    01    04:00 <NA>       NA
##  6 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 05:00:00 2016  01    01    05:00 <NA>       NA
##  7 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 06:00:00 2016  01    01    06:00 <NA>       NA
##  8 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 07:00:00 2016  01    01    07:00 <NA>       NA
##  9 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 08:00:00 2016  01    01    08:00 <NA>       NA
## 10 PRINCE GEOR…      48248 NA               BC     53.9 -123.   680 1096453    71302  VXS   2016-01-01 2016-01-01 09:00:00 2016  01    01    09:00 <NA>       NA
## # ℹ 2,198 more rows
## # ℹ 19 more variables: hmdx_flag <chr>, precip_amt <dbl>, precip_amt_flag <chr>, pressure <dbl>, pressure_flag <chr>, rel_hum <dbl>, rel_hum_flag <chr>,
## #   temp <dbl>, temp_dew <dbl>, temp_dew_flag <chr>, temp_flag <chr>, visib <dbl>, visib_flag <chr>, wind_chill <dbl>, wind_chill_flag <chr>, wind_dir <dbl>,
## #   wind_dir_flag <chr>, wind_spd <dbl>, wind_spd_flag <chr>

And plot it:

ggplot(data = kam.pg, aes(x = time, y = temp, group = station_name, colour = station_name)) +
  theme(legend.position = "top") +
  geom_line() +
  theme_minimal()
plot of chunk unnamed-chunk-12

plot of chunk unnamed-chunk-12

Or you can use the vector created above:

stn_vec_df <- weather_dl(station_ids = stn_vector, start = "2016-01-01", end = "2016-02-15")

stn_vec_df
## # A tibble: 3,312 × 37
##    station_name station_id station_operator prov    lat   lon  elev climate_id WMO_id TC_id date       time                year  month day   hour  weather  hmdx
##    <chr>             <dbl> <lgl>            <chr> <dbl> <dbl> <dbl> <chr>      <chr>  <chr> <date>     <dttm>              <chr> <chr> <chr> <chr> <chr>   <dbl>
##  1 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 00:00:00 2016  01    01    00:00 <NA>       NA
##  2 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 01:00:00 2016  01    01    01:00 <NA>       NA
##  3 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 02:00:00 2016  01    01    02:00 <NA>       NA
##  4 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 03:00:00 2016  01    01    03:00 <NA>       NA
##  5 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 04:00:00 2016  01    01    04:00 <NA>       NA
##  6 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 05:00:00 2016  01    01    05:00 <NA>       NA
##  7 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 06:00:00 2016  01    01    06:00 <NA>       NA
##  8 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 07:00:00 2016  01    01    07:00 <NA>       NA
##  9 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 08:00:00 2016  01    01    08:00 <NA>       NA
## 10 CRESTON CAM…       6838 NA               BC     49.1 -116.  641. 114B1F0    71770  WJR   2016-01-01 2016-01-01 09:00:00 2016  01    01    09:00 <NA>       NA
## # ℹ 3,302 more rows
## # ℹ 19 more variables: hmdx_flag <chr>, precip_amt <dbl>, precip_amt_flag <chr>, pressure <dbl>, pressure_flag <chr>, rel_hum <dbl>, rel_hum_flag <chr>,
## #   temp <dbl>, temp_dew <dbl>, temp_dew_flag <chr>, temp_flag <chr>, visib <dbl>, visib_flag <chr>, wind_chill <dbl>, wind_chill_flag <chr>, wind_dir <dbl>,
## #   wind_dir_flag <chr>, wind_spd <dbl>, wind_spd_flag <chr>

For more information on the data flags, see the Flags vignette, for more information on units and terms, see the Terms and Units vignette.

Climate Normals

To access climate normals, you first need to know the climate_id associated with the station you’re interested in.

stations_search("Winnipeg", normals_years = "current")
## # A tibble: 1 × 13
##   prov  station_name                station_id climate_id WMO_id TC_id   lat   lon  elev tz        normals normals_1981_2010 normals_1971_2000
##   <chr> <chr>                            <dbl> <chr>       <dbl> <chr> <dbl> <dbl> <dbl> <chr>     <lgl>   <lgl>             <lgl>            
## 1 MB    WINNIPEG RICHARDSON INT'L A       3698 5023222     71852 YWG    49.9 -97.2  239. Etc/GMT+6 TRUE    TRUE              TRUE

The current year range is 1981-2010, but you can also search for stations in the previous year range:

stations_search("Winnipeg", normals_years = "1971-2000")
## # A tibble: 1 × 13
##   prov  station_name                station_id climate_id WMO_id TC_id   lat   lon  elev tz        normals normals_1981_2010 normals_1971_2000
##   <chr> <chr>                            <dbl> <chr>       <dbl> <chr> <dbl> <dbl> <dbl> <chr>     <lgl>   <lgl>             <lgl>            
## 1 MB    WINNIPEG RICHARDSON INT'L A       3698 5023222     71852 YWG    49.9 -97.2  239. Etc/GMT+6 TRUE    TRUE              TRUE

Note that the Winnipeg station has normals for both year ranges.

Then you can download the climate normals with the normals_dl() function.

n <- normals_dl("5023222")
## Warning: There were 2 warnings in `dplyr::mutate()`.
## The first warning was:
## ℹ In argument: `frost = purrr::map2(...)`.
## Caused by warning:
## ! 21 parsing failures.
## row col  expected     actual         file
##   4  -- 3 columns 15 columns literal data
##   5  -- 3 columns 15 columns literal data
##   6  -- 3 columns 15 columns literal data
##   7  -- 3 columns 15 columns literal data
##   8  -- 3 columns 15 columns literal data
## ... ... ......... .......... ............
## See problems(...) for more details.
## ℹ Run `dplyr::last_dplyr_warnings()` to see the 1 remaining warning.

There are two parts to the normals data, average weather measurements and average frost dates.

library(tidyr)
unnest(n, normals)
## # A tibble: 13 × 203
##    prov  station_name                climate_id normals_years meets_wmo period temp_daily_average temp_daily_average_code temp_sd temp_sd_code temp_daily_max
##    <chr> <chr>                       <chr>      <chr>         <lgl>     <fct>               <dbl> <chr>                     <dbl> <chr>                 <dbl>
##  1 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Jan                 -16.4 A                           4.1 A                     -11.3
##  2 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Feb                 -13.2 A                           4.2 A                      -8.1
##  3 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Mar                  -5.8 A                           3.1 A                      -0.8
##  4 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Apr                   4.4 A                           2.7 A                      10.9
##  5 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      May                  11.6 A                           2.1 A                      18.6
##  6 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Jun                  17   A                           2   A                      23.2
##  7 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Jul                  19.7 A                           1.4 A                      25.9
##  8 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Aug                  18.8 A                           1.9 A                      25.4
##  9 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Sep                  12.7 A                           1.3 A                      19  
## 10 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Oct                   5   A                           1.8 A                      10.5
## 11 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Nov                  -4.9 A                           3.6 A                      -0.5
## 12 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Dec                 -13.2 A                           4.4 A                      -8.5
## 13 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      Year                  3   A                           1.2 A                       8.7
## # ℹ 192 more variables: temp_daily_max_code <chr>, temp_daily_min <dbl>, temp_daily_min_code <chr>, temp_extreme_max <dbl>, temp_extreme_max_code <chr>,
## #   temp_extreme_max_date <date>, temp_extreme_max_date_code <chr>, temp_extreme_min <dbl>, temp_extreme_min_code <chr>, temp_extreme_min_date <date>,
## #   temp_extreme_min_date_code <chr>, rain <dbl>, rain_code <chr>, snow <dbl>, snow_code <chr>, precip <dbl>, precip_code <chr>, snow_mean_depth <dbl>,
## #   snow_mean_depth_code <chr>, snow_median_depth <dbl>, snow_median_depth_code <chr>, snow_depth_month_end <dbl>, snow_depth_month_end_code <chr>,
## #   rain_extreme_daily <dbl>, rain_extreme_daily_code <chr>, rain_extreme_daily_date <date>, rain_extreme_daily_date_code <chr>, snow_extreme_daily <dbl>,
## #   snow_extreme_daily_code <chr>, snow_extreme_daily_date <date>, snow_extreme_daily_date_code <chr>, precip_extreme_daily <dbl>,
## #   precip_extreme_daily_code <chr>, precip_extreme_daily_date <date>, precip_extreme_daily_date_code <chr>, snow_extreme_depth <dbl>, …
unnest(n, frost)
## # A tibble: 6 × 32
##   prov  station_name                climate_id normals_years meets_wmo normals  frost_code date_first_fall_frost date_last_spring_frost length_frost_free
##   <chr> <chr>                       <chr>      <chr>         <lgl>     <list>   <chr>                      <dbl>                  <dbl>             <dbl>
## 1 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      <tibble> A                            265                    143               121
## 2 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      <tibble> A                            265                    143               121
## 3 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      <tibble> A                            265                    143               121
## 4 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      <tibble> <NA>                          NA                     NA                NA
## 5 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      <tibble> <NA>                          NA                     NA                NA
## 6 MB    WINNIPEG RICHARDSON INT'L A 5023222    1981-2010     TRUE      <tibble> <NA>                          NA                     NA                NA
## # ℹ 22 more variables: `Probability of first temperature in fall <= 0C, on or before indicated date (10%)` <dbl>,
## #   `Probability of first temperature in fall <= 0C, on or before indicated date (25%)` <dbl>,
## #   `Probability of first temperature in fall <= 0C, on or before indicated date (33%)` <dbl>,
## #   `Probability of first temperature in fall <= 0C, on or before indicated date (50%)` <dbl>,
## #   `Probability of first temperature in fall <= 0C, on or before indicated date (66%)` <dbl>,
## #   `Probability of first temperature in fall <= 0C, on or before indicated date (75%)` <dbl>,
## #   `Probability of first temperature in fall <= 0C, on or before indicated date (90%)` <dbl>, …

Alternatively, download the 1971-2000 normals:

n <- normals_dl("5023222", normals_years = "1971-2000")
unnest(n, normals)
## # A tibble: 13 × 229
##    prov  station_name                climate_id normals_years meets_wmo period temp_daily_average temp_daily_average_code temp_sd temp_sd_code temp_daily_max
##    <chr> <chr>                       <chr>      <chr>         <lgl>     <fct>               <dbl> <chr>                     <dbl> <chr>                 <dbl>
##  1 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Jan                 -17.8 A                           3.9 A                     -12.7
##  2 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Feb                 -13.6 A                           4.2 A                      -8.5
##  3 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Mar                  -6.1 A                           3.5 A                      -1.1
##  4 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Apr                   4   A                           2.7 A                      10.3
##  5 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      May                  12   A                           2.5 A                      19.2
##  6 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Jun                  17   A                           1.8 A                      23.3
##  7 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Jul                  19.5 A                           1.5 A                      25.8
##  8 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Aug                  18.5 A                           1.8 A                      25  
##  9 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Sep                  12.3 A                           1.4 A                      18.6
## 10 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Oct                   5.3 A                           1.6 A                      10.8
## 11 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Nov                  -5.3 A                           3.3 A                      -0.9
## 12 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Dec                 -14.4 A                           4.2 A                      -9.7
## 13 MB    WINNIPEG RICHARDSON INT'L A 5023222    1971-2000     TRUE      Year                  2.6 A                           1.3 A                       8.3
## # ℹ 218 more variables: temp_daily_max_code <chr>, temp_daily_min <dbl>, temp_daily_min_code <chr>, temp_extreme_max <dbl>, temp_extreme_max_code <chr>,
## #   temp_extreme_max_date <date>, temp_extreme_max_date_code <chr>, temp_extreme_min <dbl>, temp_extreme_min_code <chr>, temp_extreme_min_date <date>,
## #   temp_extreme_min_date_code <chr>, rain <dbl>, rain_code <chr>, snow <dbl>, snow_code <chr>, precip <dbl>, precip_code <chr>, snow_mean_depth <dbl>,
## #   snow_mean_depth_code <chr>, snow_median_depth <dbl>, snow_median_depth_code <chr>, snow_depth_month_end <dbl>, snow_depth_month_end_code <chr>,
## #   rain_extreme_daily <dbl>, rain_extreme_daily_code <chr>, rain_extreme_daily_date <date>, rain_extreme_daily_date_code <chr>, snow_extreme_daily <dbl>,
## #   snow_extreme_daily_code <chr>, snow_extreme_daily_date <date>, snow_extreme_daily_date_code <chr>, precip_extreme_daily <dbl>,
## #   precip_extreme_daily_code <chr>, precip_extreme_daily_date <date>, precip_extreme_daily_date_code <chr>, snow_extreme_depth <dbl>, …
unnest(n, frost)
## # A tibble: 0 × 6
## # ℹ 6 variables: prov <chr>, station_name <chr>, climate_id <chr>, normals_years <chr>, meets_wmo <lgl>, normals <list>