
Package index
-
cerrado_2classes - Samples of classes Cerrado and Pasture
-
hist(<probs_cube>) - histogram of prob cubes
-
hist(<raster_cube>) - histogram of data cubes
-
hist(<sits>) - Histogram
-
hist(<uncertainty_cube>) - Histogram uncertainty cubes
-
impute_linear() - Replace NA values by linear interpolation
-
plot(<sits>) - Plot time series and data cubes
-
plot(<class_cube>) - Plot classified images
-
plot(<class_vector_cube>) - Plot Segments
-
plot(<dem_cube>) - Plot DEM cubes
-
plot(<geo_distances>) - Make a kernel density plot of samples distances.
-
plot(<patterns>) - Plot patterns that describe classes
-
plot(<predicted>) - Plot time series predictions
-
plot(<probs_cube>) - Plot probability cubes
-
plot(<probs_vector_cube>) - Plot probability vector cubes
-
plot(<raster_cube>) - Plot RGB data cubes
-
plot(<rfor_model>) - Plot Random Forest model
-
plot(<sar_cube>) - Plot SAR data cubes
-
plot(<sits_accuracy>) - Plot confusion matrix
-
plot(<sits_cluster>) - Plot a dendrogram cluster
-
plot(<som_clean_samples>) - Plot SOM samples evaluated
-
plot(<som_evaluate_cluster>) - Plot confusion between clusters
-
plot(<som_map>) - Plot a SOM map
-
plot(<torch_model>) - Plot Torch (deep learning) model
-
plot(<uncertainty_cube>) - Plot uncertainty cubes
-
plot(<uncertainty_vector_cube>) - Plot uncertainty vector cubes
-
plot(<variance_cube>) - Plot variance cubes
-
plot(<vector_cube>) - Plot RGB vector data cubes
-
plot(<xgb_model>) - Plot XGB model
-
point_mt_6bands - A time series sample with data from 2000 to 2016
-
samples_l8_rondonia_2bands - Samples of Amazon tropical forest biome for deforestation analysis
-
samples_modis_ndvi - Samples of nine classes for the state of Mato Grosso
-
sits-packagesits - sits
-
sits_accuracy() - Assess classification accuracy
-
sits_add_base_cube() - Add base maps to a time series data cube
-
sits_apply() - Apply a function on a set of time series
-
sits_as_sf() - Return a sits_tibble or raster_cube as an sf object.
-
sits_as_stars() - Convert a data cube into a stars object
-
sits_as_terra() - Convert a data cube into a Spatial Raster object from terra
-
sits_bands()`sits_bands<-`() - Get the names of the bands
-
sits_bbox() - Get the bounding box of the data
-
sits_classify() - Classify time series or data cubes
-
sits_classify(<raster_cube>) - Classify a regular raster cube
-
sits_classify(<vector_cube>) - Classify a segmented data cube
-
sits_classify(<sits>) - Classify a set of time series
-
sits_clean() - Cleans a classified map using a local window
-
sits_cluster_clean() - Removes labels that are minority in each cluster.
-
sits_cluster_dendro() - Find clusters in time series samples
-
sits_cluster_frequency() - Show label frequency in each cluster produced by dendrogram analysis
-
sits_colors() - Function to retrieve sits color table
-
sits_colors_qgis() - Function to save color table as QML style for data cube
-
sits_colors_reset() - Function to reset sits color table
-
sits_colors_set() - Function to set sits color table
-
sits_colors_show() - Function to show colors in SITS
-
sits_combine_predictions() - Estimate ensemble prediction based on list of probs cubes
-
sits_confidence_sampling() - Suggest high confidence samples to increase the training set.
-
sits_config() - Configure parameters for sits package
-
sits_config_show() - Show current sits configuration
-
sits_config_user_file() - Create a user configuration file.
-
sits_cube() - Create data cubes from image collections
-
sits_cube(<local_cube>) - Create sits cubes from cubes in flat files in a local
-
sits_cube(<results_cube>) - Create a results cube from local files
-
sits_cube(<stac_cube>) - Create data cubes from image collections accessible by STAC
-
sits_cube(<vector_cube>) - Create a vector cube from local files
-
sits_cube_copy() - Copy the images of a cube to a local directory
-
sits_factory_function() - Create a closure for calling functions with and without data
-
sits_filter() - Filter time series with smoothing filter
-
sits_formula_linear() - Define a linear formula for classification models
-
sits_formula_logref() - Define a loglinear formula for classification models
-
sits_geo_dist() - Compute the minimum distances among samples and prediction points.
-
sits_get_class() - Get values from classified maps
-
sits_get_data() - Get time series from data cubes and cloud services
-
sits_get_data(<csv>) - Get time series using CSV files
-
sits_get_data(<data.frame>) - Get time series using sits objects
-
sits_get_data(<sf>) - Get time series using sf objects
-
sits_get_data(<shp>) - Get time series using shapefiles
-
sits_get_data(<sits>) - Get time series using sits objects
-
sits_get_probs() - Get values from probability maps
-
sits_impute() - Replace NA values in time series with imputation function
-
sits_kfold_validate() - Cross-validate time series samples
-
sits_label_classification() - Build a labelled image from a probability cube
-
`sits_labels<-`(<class_cube>) - Change the labels of a set of time series
-
`sits_labels<-`(<default>) - Change the labels of a set of time series
-
`sits_labels<-`(<probs_cube>) - Change the labels of a set of time series
-
`sits_labels<-`(<sits>) - Change the labels of a set of time series
-
`sits_labels<-`() - Change the labels of a set of time series
-
sits_labels() - Get labels associated to a data set
-
sits_labels_summary() - Inform label distribution of a set of time series
-
sits_lightgbm() - Train light gradient boosting model
-
sits_lighttae() - Train a model using Lightweight Temporal Self-Attention Encoder
-
sits_list_collections() - List the cloud collections supported by sits
-
sits_lstm_fcn() - Train a Long Short Term Memory Fully Convolutional Network
-
sits_merge() - Merge two data sets (time series or cubes)
-
sits_mgrs_to_roi() - Convert MGRS tile information to ROI in WGS84
-
sits_mixture_model() - Multiple endmember spectral mixture analysis
-
sits_mlp() - Train multi-layer perceptron models using torch
-
sits_model_export() - Export classification models
-
sits_mosaic() - Mosaic classified cubes
-
sits_patterns() - Find temporal patterns associated to a set of time series
-
sits_pred_features() - Obtain numerical values of predictors for time series samples
-
sits_pred_normalize() - Normalize predictor values
-
sits_pred_references() - Obtain categorical id and predictor labels for time series samples
-
sits_pred_sample() - Obtain a fraction of the predictors data frame
-
sits_predictors() - Obtain predictors for time series samples
-
sits_reclassify() - Reclassify a classified cube
-
sits_reduce() - Reduces a cube or samples from a summarization function
-
sits_reduce_imbalance() - Reduce imbalance in a set of samples
-
sits_regularize() - Build a regular data cube from an irregular one
-
sits_resnet() - Train ResNet classification models
-
sits_rfor() - Train random forest models
-
sits_roi_to_mgrs() - Given a ROI, find MGRS tiles intersecting it.
-
sits_roi_to_tiles() - Find tiles of a given ROI and Grid System
-
sits_run_examples() - Informs if sits examples should run
-
sits_run_tests() - Informs if sits tests should run
-
sits_sample() - Sample a percentage of a time series
-
sits_sampling_design() - Allocation of sample size to strata
-
sits_segment() - Segment an image
-
sits_select() - Filter a data set (tibble or cube) for bands, tiles, and dates
-
sits_sgolay() - Filter time series with Savitzky-Golay filter
-
sits_slic() - Segment an image using SLIC
-
sits_smooth() - Smooth probability cubes with spatial predictors
-
sits_som_clean_samples() - Cleans the samples based on SOM map information
-
sits_som_evaluate_cluster() - Evaluate cluster
-
sits_som_map() - Build a SOM for quality analysis of time series samples
-
sits_som_remove_samples() - Evaluate cluster
-
sits_stats() - Obtain statistics for all sample bands
-
sits_stratified_sampling() - Allocation of sample size to strata
-
sits_svm() - Train support vector machine models
-
sits_tae() - Train a model using Temporal Self-Attention Encoder
-
sits_tempcnn() - Train temporal convolutional neural network models
-
sits_texture() - Apply a set of texture measures on a data cube.
-
sits_tiles_to_roi() - Convert MGRS tile information to ROI in WGS84
-
sits_timeline() - Get timeline of a cube or a set of time series
-
sits_timeseries_to_csv() - Export a a full sits tibble to the CSV format
-
sits_to_csv() - Export a sits tibble metadata to the CSV format
-
sits_to_xlsx() - Save accuracy assessments as Excel files
-
sits_train() - Train classification models
-
sits_tuning() - Tuning machine learning models hyper-parameters
-
sits_tuning_hparams() - Tuning machine learning models hyper-parameters
-
sits_uncertainty() - Estimate classification uncertainty based on probs cube
-
sits_uncertainty_sampling() - Suggest samples for enhancing classification accuracy
-
sits_validate() - Validate time series samples
-
sits_variance() - Calculate the variance of a probability cube
-
sits_view() - View data cubes and samples in leaflet
-
sits_whittaker() - Filter time series with whittaker filter
-
sits_xgboost() - Train extreme gradient boosting models
-
summary(<class_cube>) - Summarize data cubes
-
summary(<raster_cube>) - Summarize data cubes
-
summary(<sits>) - Summarize sits
-
summary(<sits_accuracy>) - Summarize accuracy matrix for training data
-
summary(<sits_area_accuracy>) - Summarize accuracy matrix for area data
-
summary(<variance_cube>) - Summarize variance cubes