Skip to contents

For example, sum total travel in both directions.

Usage

od_oneway(
  x,
  attrib = names(x[-c(1:2)])[vapply(x[-c(1:2)], is.numeric, TRUE)],
  id1 = names(x)[1],
  id2 = names(x)[2],
  stplanr.key = NULL
)

Arguments

x

A data frame or SpatialLinesDataFrame, representing an OD matrix

attrib

A vector of column numbers or names, representing variables to be aggregated. By default, all numeric variables are selected. aggregate

id1

Optional (it is assumed to be the first column) text string referring to the name of the variable containing the unique id of the origin

id2

Optional (it is assumed to be the second column) text string referring to the name of the variable containing the unique id of the destination

stplanr.key

Optional key of unique OD pairs regardless of the order, e.g., as generated by od_id_max_min() or od_id_szudzik()

Value

oneway outputs a data frame (or sf data frame) with rows containing results for the user-selected attribute values that have been aggregated.

Details

Flow data often contains movement in two directions: from point A to point B and then from B to A. This can be problematic for transport planning, because the magnitude of flow along a route can be masked by flows the other direction. If only the largest flow in either direction is captured in an analysis, for example, the true extent of travel will by heavily under-estimated for OD pairs which have similar amounts of travel in both directions. Flows in both direction are often represented by overlapping lines with identical geometries which can be confusing for users and are difficult to plot.

Examples

(od_min <- od_data_sample[c(1, 2, 9), 1:6])
#> # A tibble: 3 × 6
#>   geo_code1 geo_code2   all from_home light_rail train
#>   <chr>     <chr>     <dbl>     <dbl>      <dbl> <dbl>
#> 1 E02002361 E02002361   109         0          0     0
#> 2 E02002361 E02002363    38         0          0     1
#> 3 E02002363 E02002361    30         0          0     0
(od_oneway <- od_oneway(od_min))
#> # A tibble: 2 × 6
#>   geo_code1 geo_code2   all from_home light_rail train
#>   <chr>     <chr>     <dbl>     <dbl>      <dbl> <dbl>
#> 1 E02002361 E02002361   109         0          0     0
#> 2 E02002361 E02002363    68         0          0     1
# (od_oneway_old = onewayid(od_min, attrib = 3:6)) # old implementation
nrow(od_oneway) < nrow(od_min) # result has fewer rows
#> [1] TRUE
sum(od_min$all) == sum(od_oneway$all) # but the same total flow
#> [1] TRUE
od_oneway(od_min, attrib = "all")
#> # A tibble: 2 × 3
#>   geo_code1 geo_code2   all
#>   <chr>     <chr>     <dbl>
#> 1 E02002361 E02002361   109
#> 2 E02002361 E02002363    68
attrib <- which(vapply(flow, is.numeric, TRUE))
flow_oneway <- od_oneway(flow, attrib = attrib)
colSums(flow_oneway[attrib]) == colSums(flow[attrib]) # test if the colSums are equal
#>                                  All          Work.mainly.at.or.from.home 
#>                                 TRUE                                 TRUE 
#> Underground..metro..light.rail..tram                                Train 
#>                                 TRUE                                 TRUE 
#>                Bus..minibus.or.coach                                 Taxi 
#>                                 TRUE                                 TRUE 
#>         Motorcycle..scooter.or.moped                 Driving.a.car.or.van 
#>                                 TRUE                                 TRUE 
#>            Passenger.in.a.car.or.van                              Bicycle 
#>                                 TRUE                                 TRUE 
#>                              On.foot       Other.method.of.travel.to.work 
#>                                 TRUE                                 TRUE 
# Demonstrate the results from oneway and onewaygeo are identical
flow_oneway_sf <- od_oneway(flowlines_sf)
#> Joining with `by = join_by(Area.of.residence, Area.of.workplace)`
plot(flow_oneway_sf$geometry, lwd = flow_oneway_sf$All / mean(flow_oneway_sf$All))