A set is a group of unique elements it can be either a fuzzy set, where the relationship is between 0 or 1 or nominal.
Details
When printed if an element or a set do not have any relationship is not
shown.
They can be created from lists, matrices or data.frames. Check tidySet()
constructor for more information.
Slots
relations
A data.frame with elements and the sets were they belong.
elements
A data.frame of unique elements and related information.
sets
A data.frame of unique sets and related information.
See also
Other methods:
activate()
,
add_column()
,
add_relation()
,
arrange.TidySet()
,
cartesian()
,
complement_element()
,
complement_set()
,
complement()
,
element_size()
,
elements()
,
filter.TidySet()
,
group_by.TidySet()
,
group()
,
incidence()
,
intersection()
,
is.fuzzy()
,
is_nested()
,
move_to()
,
mutate.TidySet()
,
nElements()
,
nRelations()
,
nSets()
,
name_elements<-()
,
name_sets<-()
,
name_sets()
,
power_set()
,
pull.TidySet()
,
relations()
,
remove_column()
,
remove_element()
,
remove_relation()
,
remove_set()
,
rename_elements()
,
rename_set()
,
select.TidySet()
,
set_size()
,
sets()
,
subtract()
,
union()
Examples
x <- list("A" = letters[1:5], "B" = LETTERS[3:7])
a <- tidySet(x)
a
#> elements sets fuzzy
#> 1 a A 1
#> 2 b A 1
#> 3 c A 1
#> 4 d A 1
#> 5 e A 1
#> 6 C B 1
#> 7 D B 1
#> 8 E B 1
#> 9 F B 1
#> 10 G B 1
x <- list("A" = letters[1:5], "B" = character())
b <- tidySet(x)
b
#> elements sets fuzzy
#> 1 a A 1
#> 2 b A 1
#> 3 c A 1
#> 4 d A 1
#> 5 e A 1
name_sets(b)
#> [1] "A" "B"