Use complement to find elements or sets the TidySet object. You can use activate with complement or use the specific function. You must specify if you want the complements of sets or elements.
Arguments
- .data
The TidySet object
- ...
Other arguments passed to either
complement_set()
orcomplement_element()
.
See also
Other complements:
complement_element()
,
complement_set()
,
subtract()
Other methods:
TidySet-class
,
activate()
,
add_column()
,
add_relation()
,
arrange.TidySet()
,
cartesian()
,
complement_element()
,
complement_set()
,
element_size()
,
elements()
,
filter.TidySet()
,
group()
,
group_by.TidySet()
,
incidence()
,
intersection()
,
is.fuzzy()
,
is_nested()
,
move_to()
,
mutate.TidySet()
,
nElements()
,
nRelations()
,
nSets()
,
name_elements<-()
,
name_sets()
,
name_sets<-()
,
power_set()
,
pull.TidySet()
,
relations()
,
remove_column()
,
remove_element()
,
remove_relation()
,
remove_set()
,
rename_elements()
,
rename_set()
,
select.TidySet()
,
set_size()
,
sets()
,
subtract()
,
union()
Examples
rel <- data.frame(
sets = c("A", "A", "B", "B", "C", "C"),
elements = letters[seq_len(6)],
fuzzy = runif(6)
)
TS <- tidySet(rel)
TS |>
activate("elements") |>
complement("a")
#> elements sets fuzzy
#> 1 a A 0.2900502
#> 2 b A 0.4800752
#> 3 c B 0.9200055
#> 4 d B 0.4007202
#> 5 e C 0.2131727
#> 6 f C 0.6717668
#> 7 a ∁a 0.7099498
TS |>
activate("elements") |>
complement("a", "C_a", keep = FALSE)
#> elements sets fuzzy
#> 1 a C_a 0.7099498
TS |>
activate("set") |>
complement("A")
#> elements sets fuzzy
#> 1 a A 0.2900502
#> 2 b A 0.4800752
#> 3 c B 0.9200055
#> 4 d B 0.4007202
#> 5 e C 0.2131727
#> 6 f C 0.6717668
#> 7 a ∁A 0.7099498
#> 8 b ∁A 0.5199248
TS |>
activate("set") |>
complement("A", keep = FALSE)
#> elements sets fuzzy
#> 1 a ∁A 0.7099498
#> 2 b ∁A 0.5199248
TS |>
activate("set") |>
complement("A", FUN = function(x){abs(x - 0.2)}, keep = FALSE)
#> elements sets fuzzy
#> 1 a ∁A 0.09005016
#> 2 b ∁A 0.28007517