Create the power set of the object: All the combinations of the elements of the sets.
See also
Other methods:
TidySet-class
,
activate()
,
add_column()
,
add_relation()
,
arrange.TidySet()
,
cartesian()
,
complement_element()
,
complement_set()
,
complement()
,
element_size()
,
elements()
,
filter.TidySet()
,
group_by.TidySet()
,
group()
,
incidence()
,
intersection()
,
is.fuzzy()
,
is_nested()
,
move_to()
,
mutate.TidySet()
,
nElements()
,
nRelations()
,
nSets()
,
name_elements<-()
,
name_sets<-()
,
name_sets()
,
pull.TidySet()
,
relations()
,
remove_column()
,
remove_element()
,
remove_relation()
,
remove_set()
,
rename_elements()
,
rename_set()
,
select.TidySet()
,
set_size()
,
sets()
,
subtract()
,
union()
Examples
relations <- data.frame(
sets = c(rep("a", 5), "b"),
elements = letters[seq_len(6)]
)
TS <- tidySet(relations)
power_set(TS, "a", name = "power_set")
#> elements sets fuzzy
#> 1 a a 1
#> 2 b a 1
#> 3 c a 1
#> 4 d a 1
#> 5 e a 1
#> 6 f b 1
#> 7 a power_set_1_1 1
#> 8 b power_set_1_2 1
#> 9 c power_set_1_3 1
#> 10 d power_set_1_4 1
#> 11 e power_set_1_5 1
#> 12 a power_set_2_1 1
#> 13 b power_set_2_1 1
#> 14 a power_set_2_2 1
#> 15 c power_set_2_2 1
#> 16 a power_set_2_3 1
#> 17 d power_set_2_3 1
#> 18 a power_set_2_4 1
#> 19 e power_set_2_4 1
#> 20 b power_set_2_5 1
#> 21 c power_set_2_5 1
#> 22 b power_set_2_6 1
#> 23 d power_set_2_6 1
#> 24 b power_set_2_7 1
#> 25 e power_set_2_7 1
#> 26 c power_set_2_8 1
#> 27 d power_set_2_8 1
#> 28 c power_set_2_9 1
#> 29 e power_set_2_9 1
#> 30 d power_set_2_10 1
#> 31 e power_set_2_10 1
#> 32 a power_set_3_1 1
#> 33 b power_set_3_1 1
#> 34 c power_set_3_1 1
#> 35 a power_set_3_2 1
#> 36 b power_set_3_2 1
#> 37 d power_set_3_2 1
#> 38 a power_set_3_3 1
#> 39 b power_set_3_3 1
#> 40 e power_set_3_3 1
#> 41 a power_set_3_4 1
#> 42 c power_set_3_4 1
#> 43 d power_set_3_4 1
#> 44 a power_set_3_5 1
#> 45 c power_set_3_5 1
#> 46 e power_set_3_5 1
#> 47 a power_set_3_6 1
#> 48 d power_set_3_6 1
#> 49 e power_set_3_6 1
#> 50 b power_set_3_7 1
#> 51 c power_set_3_7 1
#> 52 d power_set_3_7 1
#> 53 b power_set_3_8 1
#> 54 c power_set_3_8 1
#> 55 e power_set_3_8 1
#> 56 b power_set_3_9 1
#> 57 d power_set_3_9 1
#> 58 e power_set_3_9 1
#> 59 c power_set_3_10 1
#> 60 d power_set_3_10 1
#> 61 e power_set_3_10 1
#> 62 a power_set_4_1 1
#> 63 b power_set_4_1 1
#> 64 c power_set_4_1 1
#> 65 d power_set_4_1 1
#> 66 a power_set_4_2 1
#> 67 b power_set_4_2 1
#> 68 c power_set_4_2 1
#> 69 e power_set_4_2 1
#> 70 a power_set_4_3 1
#> 71 b power_set_4_3 1
#> 72 d power_set_4_3 1
#> 73 e power_set_4_3 1
#> 74 a power_set_4_4 1
#> 75 c power_set_4_4 1
#> 76 d power_set_4_4 1
#> 77 e power_set_4_4 1
#> 78 b power_set_4_5 1
#> 79 c power_set_4_5 1
#> 80 d power_set_4_5 1
#> 81 e power_set_4_5 1