Assuming that the fuzzy values are probabilities, calculates the probability of being of different sizes for a given set.
Methods (by class)
set_size(TidySet): Calculates the size of a set usinglength_set()
See also
cardinality
Other sizes:
element_size()
Other methods:
TidySet-class,
activate(),
add_column(),
add_relation(),
arrange.TidySet(),
cartesian(),
complement(),
complement_element(),
complement_set(),
element_size(),
elements(),
filter.TidySet(),
group(),
group_by.TidySet(),
incidence(),
intersection(),
is.fuzzy(),
is_nested(),
move_to(),
mutate.TidySet(),
nElements(),
nRelations(),
nSets(),
name_elements<-(),
name_sets(),
name_sets<-(),
power_set(),
pull.TidySet(),
relations(),
remove_column(),
remove_element(),
remove_relation(),
remove_set(),
rename_elements(),
rename_set(),
select.TidySet(),
sets(),
subtract(),
union()
Examples
relations <- data.frame(
sets = c(rep("A", 5), "B", "C"),
elements = c(letters[seq_len(6)], letters[6]),
fuzzy = runif(7)
)
a <- tidySet(relations)
set_size(a)
#> sets size probability
#> 1 A 0 0.001986152
#> 2 A 1 0.151040293
#> 3 A 2 0.429573109
#> 4 A 3 0.351379611
#> 5 A 4 0.063502987
#> 6 A 5 0.002517848
#> 7 B 0 0.874210773
#> 8 B 1 0.125789227
#> 9 C 0 0.036818246
#> 10 C 1 0.963181754
