Use arrange to extract the columns of a TidySet object. You can use activate with filter or use the specific function. The S3 method filters using all the information on the TidySet.
Usage
# S3 method for class 'TidySet'
arrange(.data, ...)
arrange_set(.data, ...)
arrange_element(.data, ...)
arrange_relation(.data, ...)
See also
dplyr::arrange()
and activate()
Other methods:
TidySet-class
,
activate()
,
add_column()
,
add_relation()
,
cartesian()
,
complement_element()
,
complement_set()
,
complement()
,
element_size()
,
elements()
,
filter.TidySet()
,
group_by.TidySet()
,
group()
,
incidence()
,
intersection()
,
is.fuzzy()
,
is_nested()
,
move_to()
,
mutate.TidySet()
,
nElements()
,
nRelations()
,
nSets()
,
name_elements<-()
,
name_sets<-()
,
name_sets()
,
power_set()
,
pull.TidySet()
,
relations()
,
remove_column()
,
remove_element()
,
remove_relation()
,
remove_set()
,
rename_elements()
,
rename_set()
,
select.TidySet()
,
set_size()
,
sets()
,
subtract()
,
union()
Examples
relations <- data.frame(
sets = c(rep("A", 5), "B", rep("A2", 5), "B2"),
elements = rep(letters[seq_len(6)], 2),
fuzzy = runif(12)
)
a <- tidySet(relations)
a <- mutate_element(a,
type = c(rep("Gene", 4), rep("lncRNA", 2))
)
b <- arrange(a, desc(type))
elements(b)
#> elements type
#> 1 e lncRNA
#> 2 f lncRNA
#> 5 a Gene
#> 6 b Gene
#> 7 c Gene
#> 8 d Gene
b <- arrange_element(a, elements)
elements(b)
#> elements type
#> 1 a Gene
#> 2 b Gene
#> 3 c Gene
#> 4 d Gene
#> 5 e lncRNA
#> 6 f lncRNA
# Arrange sets
arrange_set(a, sets)
#> elements sets fuzzy type
#> 1 a A 0.70643384 Gene
#> 2 b A 0.94857658 Gene
#> 3 c A 0.18033877 Gene
#> 4 d A 0.21689988 Gene
#> 5 e A 0.68016292 lncRNA
#> 6 f B 0.49884561 lncRNA
#> 7 a A2 0.64167935 Gene
#> 8 b A2 0.66028435 Gene
#> 9 c A2 0.09602416 Gene
#> 10 d A2 0.76560016 Gene
#> 11 e A2 0.76967480 lncRNA
#> 12 f B2 0.99071231 lncRNA