Use select to extract the columns of a TidySet object. You can use activate with filter or use the specific function. The S3 method filters using all the information on the TidySet.
Usage
# S3 method for class 'TidySet'
select(.data, ...)
select_set(.data, ...)
select_element(.data, ...)
select_relation(.data, ...)See also
dplyr::select() and activate()
Other methods:
TidySet-class,
activate(),
add_column(),
add_relation(),
arrange.TidySet(),
cartesian(),
complement(),
complement_element(),
complement_set(),
element_size(),
elements(),
filter.TidySet(),
group(),
group_by.TidySet(),
incidence(),
intersection(),
is.fuzzy(),
is_nested(),
move_to(),
mutate.TidySet(),
nElements(),
nRelations(),
nSets(),
name_elements<-(),
name_sets(),
name_sets<-(),
power_set(),
pull.TidySet(),
relations(),
remove_column(),
remove_element(),
remove_relation(),
remove_set(),
rename_elements(),
rename_set(),
set_size(),
sets(),
subtract(),
union()
Examples
relations <- data.frame(
    sets = c(rep("a", 5), "b", rep("a2", 5), "b2"),
    elements = rep(letters[seq_len(6)], 2),
    fuzzy = runif(12)
)
a <- tidySet(relations)
a <- mutate_element(a,
    type = c(rep("Gene", 4), rep("lncRNA", 2))
)
a <- mutate_set(a, Group = c("UFM", "UAB", "UPF", "MIT"))
b <- select(a, -type)
elements(b)
#>   elements
#> 1        a
#> 2        b
#> 3        c
#> 4        d
#> 5        e
#> 6        f
b <- select_element(a, elements)
elements(b)
#>   elements
#> 1        a
#> 2        b
#> 3        c
#> 4        d
#> 5        e
#> 6        f
# Select sets
select_set(a, sets)
#>    elements sets     fuzzy   type
#> 1         a    a 0.5669098   Gene
#> 2         b    a 0.8980774   Gene
#> 3         c    a 0.5944723   Gene
#> 4         d    a 0.8316899   Gene
#> 5         e    a 0.5934084 lncRNA
#> 6         f    b 0.7789706 lncRNA
#> 7         a   a2 0.3977716   Gene
#> 8         b   a2 0.8498828   Gene
#> 9         c   a2 0.7418456   Gene
#> 10        d   a2 0.3177902   Gene
#> 11        e   a2 0.1116802 lncRNA
#> 12        f   b2 0.1010954 lncRNA
